Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Algebraic Geometry

Part I: Schemes. With Examples and Exercises
Buch | Softcover
IV, 615 Seiten
2010 | 2010
Vieweg & Teubner (Verlag)
978-3-8348-0676-5 (ISBN)
CHF 89,85 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Algebraic geometry has its origin in the study of systems of polynomial equations f (x ,. . . ,x )=0, 1 1 n . . . f (x ,. . . ,x )=0. r 1 n Here the f ? k[X ,. . . ,X ] are polynomials in n variables with coe?cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f ,. . . ,f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics,andhavebeenstudiedsinceantiquity. Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. n If the polynomials f are linear, then V(f ,. . . ,f ) is a subvector space of k. Its i 1 r “size” is measured by its dimension and it can be described as the kernel of the linear n r map k ? k , x=(x ,. . . ,x ) ? (f (x),. . . ,f (x)). 1 n 1 r For arbitrary polynomials, V(f ,. . . ,f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose ?rst manifestation is the following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe?cients g ? k[T ,. . . ,T ]), then we have i i 1 n V(f ,. . . ,f)= V(g,f ,. . . ,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k[T ,. . . ,T ] generated by the f .

Prof. Dr. Ulrich Görtz, Institut für Experimentelle Mathematik, Universität Duisburg-Essen.Essen. Prof. Dr. Torsten Wedhorn, Institut für Mathematik, Universität Paderborn. Prof. Dr. Ulrich Görtz, Institute of Experimental Mathematics, University Duisburg-Essen. Prof. Dr. Torsten Wedhorn, Department of Mathematics, University of Paderborn.

Prevarieties - Spectrum of a Ring - Schemes - Fiber products - Schemes over fields - Local Properties of Schemes - Quasi-coherent modules - Representable Functors - Separated morphisms - Finiteness Conditions - Vector bundles - Affine and proper morphisms - Projective morphisms - Flat morphisms and dimension - One-dimensional schemes - Examples

Erscheint lt. Verlag 25.6.2010
Reihe/Serie Advanced Lectures in Mathematics
Zusatzinfo IV, 615 p.
Verlagsort Wiesbaden
Sprache englisch
Maße 168 x 240 mm
Gewicht 1006 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Geometrie / Topologie
Schlagworte Algebra • Algebraic Geometry • Algebraische Geometrie; Handbuch/Lehrbuch • Geometry • Morphisms • schemes • Vector Bundles
ISBN-10 3-8348-0676-5 / 3834806765
ISBN-13 978-3-8348-0676-5 / 9783834806765
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich