Additive Combinatorics
Seiten
2009
Cambridge University Press (Verlag)
978-0-521-13656-3 (ISBN)
Cambridge University Press (Verlag)
978-0-521-13656-3 (ISBN)
The many different tools from different fields that are used in additive combinatorics are brought together in a self-contained and systematic manner. This graduate-level 2006 text will quickly allow students and researchers easy entry into the fascinating field of additive combinatorics.
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.
Additive combinatorics is the theory of counting additive structures in sets. This theory has seen exciting developments and dramatic changes in direction in recent years thanks to its connections with areas such as number theory, ergodic theory and graph theory. This graduate-level 2006 text will allow students and researchers easy entry into this fascinating field. Here, the authors bring together in a self-contained and systematic manner the many different tools and ideas that are used in the modern theory, presenting them in an accessible, coherent, and intuitively clear manner, and providing immediate applications to problems in additive combinatorics. The power of these tools is well demonstrated in the presentation of recent advances such as Szemerédi's theorem on arithmetic progressions, the Kakeya conjecture and Erdos distance problems, and the developing field of sum-product estimates. The text is supplemented by a large number of exercises and new results.
Terence Tao is a Professor in the Department of Mathematics at the University of California, Los Angeles. He was awarded the Fields Medal in 2006 for his contributions to partial differential equations, combinatorics, harmonic analysis and additive number theory. Van H. Vu is a Professor in the Department of Mathematics at Rutgers University, New Jersey.
Prologue; 1. The probabilistic method; 2. Sum set estimates; 3. Additive geometry; 4. Fourier-analytic methods; 5. Inverse sum set theorems; 6. Graph-theoretic methods; 7. The Littlewood–Offord problem; 8. Incidence geometry; 9. Algebraic methods; 10. Szemerédi's theorem for k = 3; 11. Szemerédi's theorem for k > 3; 12. Long arithmetic progressions in sum sets; Bibliography; Index.
Erscheint lt. Verlag | 19.11.2009 |
---|---|
Reihe/Serie | Cambridge Studies in Advanced Mathematics ; Vol.105 |
Zusatzinfo | Worked examples or Exercises |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 750 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Graphentheorie |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-521-13656-3 / 0521136563 |
ISBN-13 | 978-0-521-13656-3 / 9780521136563 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Numbers and Counting, Groups, Graphs, Orders and Lattices
Buch | Softcover (2023)
De Gruyter (Verlag)
CHF 89,95