Universal Algebra and Lattice Theory
Springer Berlin (Verlag)
978-3-540-12329-3 (ISBN)
The amalgamation class of a discriminator variety is finitely axiomatizable.- Free spectra of 3-element algebras.- Tree algebras and chains.- Boolean constructions.- Extension of polygroups by polygroups and their representations using color schemes.- A characterization for congruence semi-distributivity.- Geometrical applications in modular lattices.- Subdirectly irreducible algebras in modular varieties.- A survey of varieties of lattice ordered groups.- On join-indecomposable equational theories.- Idealfree CIM-groupoids and open convex sets.- Finite forbidden lattices.- Inherently nonfinitely based finite algebras.- Tensor products of Boolean algebras.- G-principal series of stocks in an algebra.- Algebras of functions from partially ordered sets into distributive lattices.- Galois theory for partial algebras.- Every finite algebra with congruence lattice M 7 has principal congruences.- Nilpotence in permutable varieties.
Erscheint lt. Verlag | 1.7.1983 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | VIII, 312 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 445 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | Algebra • Boolean algebra • Character • Class • Congruence • Construction • Equation • Finite • Functions • Galois Theory • lattice • presentation • Sets • Universelle Algebra • Verband • Verband (Math.) |
ISBN-10 | 3-540-12329-6 / 3540123296 |
ISBN-13 | 978-3-540-12329-3 / 9783540123293 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich