Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Handbook of Materials for Wind Musical Instruments -  Voichita Bucur

Handbook of Materials for Wind Musical Instruments (eBook)

eBook Download: PDF
2019 | 1. Auflage
827 Seiten
Springer-Verlag
978-3-030-19175-7 (ISBN)
Systemvoraussetzungen
234,33 inkl. MwSt
(CHF 228,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book addresses key questions about the materials used for the wind instruments of classical symphony orchestra such as flutes, clarinets, saxophones, oboes, bassoons and pipe organs. The content of this book is structured into four parts.

Part 1- Description of materials for wind instruments deals with wood species and materials for reeds used for making clarinet, oboe and bassoon- and, with metallic materials and alloys for - horn, trumpet, trombone, etc. Auxiliary materials associated with the manufacturing of wind instruments are felt, cork, leather and parchment.

Part 2- Basic acoustics of wind instruments, in which are presented succinctly, some pertinent aspects related to the physics of the resonant air column. An important aspect discussed is related to the effect of wall material on the vibration modes of the walls of wind instruments. The methods for measuring the acoustical properties of wind instruments are presented.

Part 3- Manufacturing of wind instruments, describes the technology used in manufacturing metallic tubes and pipes made of wood.

Part 4 - The durability and degradation of materials addresses data about methods for cleaning wind instruments, studies factors producing degradation of organ pipes, describes methods of conservation and restoration of brass instruments and of historical pipe organs. Finally, the properties of marble are described, being the only one nondegradable and sustainable material used for pipes for organs.

Dr. Voichita Bucur, currently adjunct professor at RMIT Melbourne, Australia, received her bachelor in Engineering in 1962 from Polytechnic Institute Brasov, Romania, and her PhD in Mechanics and Ultrasonics in 1984 from the Institut Supérieur des Materiaux, St Ouen, Paris, France. Her fields of research encompass development of non-destructive techniques (vibrational, acoustic, ultrasonic, X- rays) for the assessment of the quality of trees, wood products and wood-based composites, mechanical characterisation of materials with non-destructive techniques, wood science and technology, and mechanical characterisation of wood for musical instruments.In 2004 she awarded silver medal by Société d'Encouragement du Progrès, France, for contributions to mechanics, acoustics, wood science, education and service to the society. In 2007 she had the distinguish award at 15th International Symposium on Nonestructive Testing of wood, Duluth, Minessota, USA, for contribution to the development of nondestructive techniques for wood and wood based composites. .

Preface 6
References 8
Contents 9
1 Introduction 20
References 25
2 Organologic Description of Wind Instruments 26
2.1 Introduction 26
2.1.1 Systems of Musical Instruments Classification 26
2.1.2 Classification of Wind Instruments from an Acoustical Standpoint 28
2.2 Structural Elements and Historical Development of Lip Driven Brass Instruments 32
2.2.1 The Trombone 32
2.2.1.1 Structural Elements of the Trombone 32
2.2.1.2 Historical Development of the Trombone 33
2.2.2 The Trumpet 35
2.2.2.1 Structural Elements of the Trumpet 35
2.2.2.2 Historical Development of the Trumpet 36
2.2.3 The Horn 38
2.2.3.1 Structural Elements of the Horn 38
2.2.3.2 Historical Development of the Horn 42
2.2.4 Wagner Tuba 45
2.2.4.1 Structural Elements of the Wagner Tuba 45
2.2.4.2 Historical Development of Wagner Tuba 48
2.2.5 The Tuba 50
2.2.5.1 Structural Elements of the Tuba 50
2.2.5.2 Historical Development of Tuba 50
2.3 Structural Elements of Reed Driven Instruments 52
2.3.1 The Clarinet 53
2.3.1.1 Structural Elements of the Clarinet 53
2.3.1.2 Historical Evolution of Clarinet 54
2.3.2 The Saxophone 61
2.3.2.1 Structural Parts of the Saxophone 61
2.3.2.2 Historical Development of the Saxophone 63
2.3.3 The Oboe 65
2.3.3.1 Structural Elements of the Oboe 65
2.3.3.2 Historical Development of the Oboe 66
2.3.4 The Bassoon 68
2.3.4.1 Structural Elements of the Bassoon 68
2.3.4.2 Historical Development of the Bassoon 71
2.4 Structural Elements of Air Jet Driven Instruments 75
2.4.1 The Recorder 75
2.4.1.1 Structural Elements of the Recorder 75
2.4.1.2 Historical evolution of the recorder 77
2.4.2 The Flute 77
2.4.2.1 Structural Elements of the Concert Flute 77
2.4.2.2 Historical Development of the Flute 80
2.4.3 The Pipe Organ 85
2.4.3.1 Structural Elements of the Pipe Organ 90
The Casework 90
2.4.3.2 The Wind System and the Action 94
2.4.3.3 Pipework 98
2.4.3.4 The Transmission 104
2.4.3.5 Casework of Organs Since 1400 to Classical Period 106
2.4.3.6 Organ Building Innovations of the Twenty First Century 112
Fookner Organ 112
The Organ in St Peter’s Church in Cologne, Designed by Peter Bares 117
The “Modulorgue” by D Birouste and M Fourcade for the Church in Plaisance–Gers, France 118
Prototype organ “mit den Wind spielen” by Peter Kraul and the scientists from the University in Bern—Switzerland 121
Organ of “Variable Geometry” 125
2.5 About the Protection of Innovation with Wind Musical Instruments and Organs 127
2.5.1 Background 127
2.5.2 Patents for Wind Instruments Manufacturing Between 1617 and 1852 127
2.5.2.1 First Patent for a Musical Instruments Manufacturer 128
2.5.2.2 Musical Instruments Manufacturing Patents for Protecting Inventions 129
2.5.3 The European Patent Convention 131
2.5.4 Patents for Musical Instruments in USA 133
2.5.5 Patents for Musical Instruments in Japan 133
2.6 Summary 133
Appendix 1 136
Appendix 2 136
References 137
Description of Materials for Wind Instruments 143
3 Wood Species for Reed-Driven Instruments—Clarinet, Oboe, Bassoon and for Baroque Flute 144
3.1 Introduction 144
3.2 Traditional Wood Species for Baroque Flute and for Clarinet, Oboe and Bassoon 148
3.3 Physical, Mechanical and Acoustical Properties of Traditional Wood Species 152
3.4 Porosity of Wood Species 158
3.5 Surface Roughness Characterisation of Wood Species 160
3.6 Effect of Surface Finishing Quality on Acoustical Characteristics of Instruments 163
3.7 Substitutive Species for Clarinet, Oboe, Bassoon 167
3.7.1 Substitutive Hardwood Species from Alaska Forests 168
3.7.2 Substitutive Hardwood Species from Australia 170
3.7.2.1 Criteria of Selection 170
3.7.2.2 Acoustical properties of some Australian species 172
3.8 Summary 175
Appendix 1 178
Appendix 2 180
Appendix 3 181
References 181
4 Physical, Mechanical and Acoustical Properties of Cane for Reeds 184
4.1 Introduction 184
4.2 Modes of Vibration of Reeds 192
4.2.1 Vibration of a Single Reed for Clarinet 193
4.2.2 Vibration of a Single Reed for Saxophone 196
4.2.3 Vibration of Double Reeds 198
4.3 Shrinkage and Swelling of Cane 201
4.3.1 Shrinkage and Swelling of Reeds 202
4.3.2 Shrinkage and Swelling of Cane Specimens 204
4.3.3 Fungi as Factors Affecting the Physical Properties of Arundo Donax 207
4.4 About the Density of Cane 210
4.4.1 General Aspects 210
4.4.2 A Simple Laboratory Method for Density Measurement 216
4.4.3 About the Variability of Density 217
4.4.4 Structural Modification of Cane Microscopic Tissue Under Mechanical Stresses 222
4.5 About the Hardness of Cane 225
4.6 Mechanical and Acoustical Properties of Cane 228
4.6.1 Methodology for Measurements of Viscoelastic Parameters of Cane 229
4.6.2 Mechanical Parameters Deduced from Data by Finite Element Analysis 233
4.6.3 Effect of Relative Humidity and Extractives 235
4.6.4 About the Stability of Mechanical Properties of Cane 238
4.7 Mosso Bamboo a Substitute of Cane for Saxophone Reeds 240
4.8 Common Reed (Phragmites Australis Cav.) for Japanese Flageolet, the Hichiriki 243
4.9 About the Ageing of Reeds 245
4.9.1 Effects of Repeated Wet-Dry and Dry-Wet Cycles on Specimens 246
4.9.2 Effect of Dynamic Loading 248
4.9.3 Effect of Reed Making on the Sound of Instruments 259
4.10 Anatomical Structure of Cane and Musical Quality of Reeds 260
4.10.1 Cane or Giant Reed (Arundo donax) and Common Reed (Phragmites australis) 260
4.10.2 Mosso Bamboo (Phyllostachys pubencens) 263
4.11 Statistical Models for the Selection of Cane for Good Quality Reeds 263
4.11.1 Correlations Among the Quality of Reeds and the Descriptors of Musical Sounds 264
4.11.2 Multiple Regression Analysis 265
4.11.3 Principal Component Analysis 265
4.12 New Materials for Reeds 271
4.13 Cane with Improved Durability and Water Resistance 272
4.14 New Materials, Having Natural Cane Similar Anisotropic Parameters 273
4.15 Summary 275
Appendix 276
References 278
5 Metallic Materials for Lip Driven and Air Jet Driven Instruments 283
5.1 Introduction 283
5.2 The Brass 283
5.2.1 The Alloy 285
5.2.2 Authenticity of Early Brass and Alloy Provenance 287
5.3 Brass as a Raw Material for Wind Musical Instruments 288
5.3.1 Brass Technology for Wind Instruments in Saxony 288
5.3.2 Brass Technology in England Between 1651–1867 290
5.4 Chemical Composition of Period Brass Instruments 291
5.4.1 Chemical Composition of Trombones Made in Nuremberg During the Sixteenth Century 292
5.4.2 Chemical Composition of Brass Wind Instruments Made in England Between 1550–1992 294
5.5 About the Finishing of Lip Driven Instruments 295
5.6 Nickel Silver, Silver and Other Precious Metals for Flute 298
5.7 Alloys for Organ Pipes 298
5.8 Summary 300
References 301
6 Fibrous Auxiliary Materials—Felt, Cork, Paperboard 303
6.1 Introduction 303
6.2 The Felt 305
6.2.1 Felt Structure 306
6.2.1.1 Wool Structure 306
6.2.1.2 Felt Structure 306
6.2.2 Physical and Mechanical Properties of Felt 307
6.2.3 Acoustical Properties of Felt 309
6.3 The Cork 311
6.3.1 Cork Structure 315
6.3.2 Physical and Mechanical Properties of Cork 315
6.4 The Cardboard 319
6.4.1 Cardboard Structure 319
6.4.2 Physical and Mechanical Properties of Cardboard 319
6.5 Summary 324
References 325
7 Organic Auxiliary Materials—Leather and Parchment 327
7.1 Introduction 327
7.2 Leather for Wind Instruments 328
7.3 Leather for Pipe Organs 335
7.4 Parchment, Vellum and Goldbeater’s Skin or Skin Fish 337
7.4.1 Parchment and Vellum 337
7.4.2 Parchment Manufacturing 339
7.4.3 Goldbeater’s Skin or Skin Fish 342
7.5 Application of FT—Raman Spectroscopy to the Characterization of Parchment and Vellum 344
7.6 Morphology of Historical Parchment with SEM Imaging 345
7.7 Summary 348
References 349
Basic Acoustics of Wind Instruments 351
8 Resonant Air Column in Wind Instruments 352
8.1 Introduction 352
8.1.1 Mechanical Reed Instruments 353
8.1.2 Lip Valve Instruments 354
8.1.3 Air Jet Instruments 354
8.2 Fundamentals of the Mechanism of Air Excitation in Tubes 354
8.3 Modelling Wind Instruments 357
8.4 Impedance Spectrum 358
8.5 Bore Geometry 362
8.6 Tone Holes 364
8.7 Mouthpiece of Wind Instruments 365
8.8 Mute 369
8.9 Summary 370
Appendix 371
References 372
9 Effect of Wall Material on Vibration Modes of Wind Instruments 374
9.1 Introduction 374
9.2 Description of Acoustical Characteristics of Wind Instruments with Impedance Curves 377
9.3 Physical Factors Affecting Wall Vibration of Wind Instruments 379
9.3.1 Wall Vibration Modelling 380
9.3.2 Effect of Wall Thickness of a Tube 385
9.3.3 Effect of Transverse Section of the Tube 386
9.3.4 Effect of Coupling Between Musical Instrument Structure and Internal Air 386
9.3.5 Effect of Coupling Between the Musical Instrument Structure and External Air 388
9.4 Effects of the Nature of Wall Materials of Wind Musical Instruments 391
9.4.1 Material’s Effect on the Vibration of a Cylindrical Tube 391
9.4.2 Materials Effect on the Vibration of a Post Horn 392
9.4.2.1 Experiments with Mechanical Shaker 394
9.4.2.2 Experiments with an Artificial Mouth 396
9.4.3 Materials Effect on the Vibration of a Trombone and a Trumpet 398
9.4.3.1 The Vibration of the Bell 398
9.4.3.2 Axial Vibrations of the Wall and Air Column 402
9.4.3.3 The Effect of Wall Thickness 403
9.4.3.4 Effect of Brass Alloy on the Tone Perception 403
9.4.4 Material Effect on the Vibration of a Flute 407
9.4.4.1 Materials for the Flute 407
9.4.4.2 Effect of Tone Holes 410
9.4.4.3 Effect of Closed End 414
9.4.5 Materials Effects on the Vibration of the Wall of Organ Pipes 416
9.4.5.1 Parameters Affecting Tonal Quality 417
9.4.5.2 Effect of Material on Wall Vibration of an Organ Pipe 419
9.4.5.3 Materials for Organ Pipes, Between Tradition and Innovation 421
9.5 Effects Induced by Pipe’s Wall Surface Quality 422
9.5.1 Effect of Wall Roughness 422
9.5.1.1 Roughness of Wood Surface 422
9.5.1.2 Roughness of brass 423
9.5.2 Effect of Surface Coating 424
9.5.3 Effect of Thermal Losses 424
9.6 Effect of Thermal Treatment on the Properties of Metallic Materials 425
9.7 The Brassiness of Lip Driven Wind Instruments and Corresponding Instruments’ Quality 428
9.8 Summary 433
References 435
10 Effects of Bore Shape and Tone Holes 440
10.1 Introduction 440
10.2 Bore Shape and Tone Holes in Woodwind Instruments 446
10.3 Acoustical Loses in Bores 448
10.4 About the Tone Holes and the Crack of the Corpus and Other Defects 450
10.5 Tone Holes and the Sound Field 451
10.6 Summary 454
References 455
11 Methods for Measuring the Acoustic Properties of Wind Instruments 457
11.1 Introduction 457
11.2 Direct Impedance Measurement Techniques 461
11.2.1 Volume Velocity Measurement 461
11.2.2 Pressure Measurement with Microphones 463
11.3 Impedance Sensors 468
11.4 Stimulus Signals for Impedance Measurements 470
11.5 About the Intensimetric Analysis of Signals 471
11.6 About Air Leaks in Wind Instruments 472
11.7 Nondestructive Optical Techniques for Detection of Vibrations of Wind Instruments 475
11.7.1 Laser Doppler Vibrometry 475
11.7.2 Holographic and Speckle Interferometry 478
11.8 Summary 482
References 483
Manufacturing of Wind Instruments 487
12 Manufacturing of Metallic Tubes for Wind Musical Instruments 488
12.1 Introduction 488
12.2 Brass as an Alloy 489
12.3 Constructive Particularities of Lip Driven Brass Instruments 492
12.4 Manufacturing of a Trumpet 495
12.4.1 Manufacturing of Structural Elements of a Trumpet 495
12.4.2 About the Consistency of Trumpet Manufacturing 498
12.5 Manufacturing of Metallic Tubes for Air-Jet Driven Instruments 501
12.5.1 Alloys for Metallic Tubes of Organs 503
12.5.2 Effects of Composition, Mechanical Treatment and Casting Techniques on Mechanical Parameters of Alloys 509
12.5.3 About the Metallic Sheets for Organ Pipes 512
12.5.4 Construction of a Labial Metallic Organ Pipe 513
12.5.5 Construction of a Lingual Metallic Pipe 520
12.5.6 About the Mechanical Properties of the Tongue of a Lingual Pipe 528
12.5.7 Comparison of Pipes Made by Different Manufacturers 530
12.6 Manufacturing of Metallic Tubes for Flutes 532
12.6.1 Alloys for Flutes 533
12.6.2 Manufacturing of Metallic Tubes for Flutes 535
12.7 Summary 535
References 536
13 Manufacturing of Tubes and Pipes in Wood 539
13.1 Introduction 539
13.2 Manufacturing of Tubes for Reed Woodwind Instruments 539
13.2.1 Technological Aspects of Tube Manufacturing 539
13.2.2 About the Consistency of Reed Woodwind Instruments Manufacturing 540
13.3 Manufacturing of Pipes in Wood for Organs 544
13.3.1 About the Oldest Historical Organ with Pipes Made in Wood Exclusively 546
13.3.2 Stops Made in Wood for the Modern Pipe Organs 548
13.3.3 Structural Aspects of Pipe Made in Wood 552
13.3.4 Constructive Particularities of Pipes Made in Wood 552
13.3.5 Manufacturing Process of Wood Organ Pipes 559
13.3.6 Tunning Appliances for Stops Made in Wood 564
13.3.7 Mitring of Long Wood Pipes 565
13.4 Summary 568
References 570
14 Manufacturing of the Reeds for Reed Driven Instruments 571
14.1 Introduction 571
14.2 Technological Aspects of Reed Manufacturing 573
14.2.1 Hand Reed Making 574
14.2.2 Modern Technology for Reed Making 580
14.3 Synthetic Materials for Reeds 584
14.4 Summary 585
Appendix: List of Patents for Reeds 586
References 588
15 Manufacturing and Functions of Pads and Keys for Woodwind Instruments 590
15.1 Introduction 590
15.2 Function and Structure of Pads for Woodwind Instruments 591
15.3 Padding of Woodwind Instruments 592
15.4 Biological Attack on Pads of Wind Instruments 596
15.5 Keys Function 598
15.6 Summary 603
References 603
16 Digital Fabrication of Some Wind Instruments 604
16.1 Introduction 604
16.2 Operational Mode and Parameterized Digital Model 606
16.3 Digital Fabrication of a Saxophone Mouthpiece and of a Saxophone Alto 613
16.4 Digital Fabrication of a Flute 617
16.5 Digital Fabrication of a Trumpet 618
16.6 About the Advantages and Limitations of Digital Technologies for Wind Instruments 621
16.7 Summary 622
References 623
About the Durability and Degradation of Materials 625
17 Procedures Used for Cleaning Metallic Wind Instruments 626
17.1 The Background 626
17.2 Mechanical Cleaning of Instruments 628
17.3 Chemical Cleaning of Instruments 628
17.4 Ultrasonic Cleaning of Metallic Wind Musical Instruments 630
17.4.1 About Ultrasonic Cleaning 630
17.4.2 Principle of Ultrasonic Method for Cleaning 632
17.4.3 Ultrasonic Equipment 635
17.4.4 Practical Aspects of Ultrasonic Cleaning 637
17.4.5 Microbial Contamination 640
17.4.6 Presence of Pathogenic Bacteria 640
17.4.7 Methods of Sterilization of Wind Musical Instruments 641
17.5 Summary 643
References 644
18 Degradation of Organ Pipes and of Brass Instruments 646
18.1 Introduction 646
18.2 About the Tin Pest 646
18.3 Tin Pest Failure and Degradation of Resonators 656
18.4 Degradation of the Reeds 658
18.4.1 Chemical Composition 660
18.4.2 About the Mechanical Properties of Reeds and Their Degradation 663
18.4.3 Vibration Modes of the Reeds 663
18.4.4 The Residual Stress in Tongues 664
18.5 Atmospheric Corrosion and Ageing of Historical Organ Pipes 668
18.6 Damages by Biological Agents of Metallic Pipes and of Pipes Made of Wood 677
18.7 About the Protection of Pipe Organ Against Fire 678
18.8 Degradation of Tubes of Brass Instruments 680
18.9 Summary 684
References 685
19 Restoration and Conservation of Metallic Wind Musical Instruments 688
19.1 Introduction 688
19.2 Conservation of Acoustical Specifications of a Wind Musical Instrument 691
19.3 Restoration of a Historical Trombone 691
19.4 Corrosion Inside Historical Brass Wind Instruments 694
19.4.1 Chemical Composition of Alloys for Horns 696
19.4.2 Imaging of Corroded Zones of Horns’ Slides 697
19.4.3 Electrochemical Techniques for Corrosion Detection 698
19.5 Corrosion of Metallic Structural Elements Containing Silver 701
19.6 About Ethics in the Conservation and Restoration of Metallic Wind Instruments 703
19.7 New Approach in Conservation of Brass Wind Instruments 706
19.8 Summary 712
References 713
20 Restoration of Pipe Organs 716
20.1 Introduction 716
20.2 About the Polemic: To Play or to Preserve Period Pipe Organs 730
20.3 Early Music Revival Movement 731
20.4 Organ Revival or Organ Reform Movement 733
20.4.1 Orgelbewegung in Germany and Other German Speaking Countries 735
20.4.2 Cecilian Movement in Italy 739
20.4.3 Organ Reform in England 741
20.4.4 Organ Revival in US 741
20.4.5 Organ Building Development After the Second World War 743
20.5 Technological Advances and Organ Building in the 20th and 21st Centuries 746
20.6 About Restoration, Conservation and Preservation of Historical Organs 753
20.6.1 Restoration of Historical Organs 758
20.6.1.1 Organs in Germany and Austria 759
20.6.1.2 Organs in Italy 760
20.6.1.3 Organs in France 762
20.6.1.4 Organs in England 762
20.6.1.5 Organs in Australia 762
20.6.1.6 Organs in Spain and Portugal 766
20.6.1.7 Organs in Central and South America 767
20.6.1.8 Organs in the US 769
20.6.2 Types of Actions for Restoration, Conservation and Preservation of Historical Organs 769
20.7 Summary 773
Appendix 1: Evolution of the Organ and Registration in France from 17th to 20th Century (Data from Guilhemjoan 1998) 777
Appendix 2: Structural Components of a Modern Organ Made in 2008 by the Holtkamp Organ Company—Cleveland for the Cathedral of St Louis in New Orleans—Opus 2093. (http://www.holtkamporgan.com/Controls/ImageViewer/ImageViewer.aspx) 779
Appendix 3: Saint Sulpice Church in Paris and the Organ Rebuilt in 1862 by Cavaillé-Coll. Roth and Dud Attenti (2014) Explained in Detail the Historical and Structural Aspects of the Organ Built by Aristide Cavaillé-Coll 782
Appendix 4: Reconstruction of the Organ of St Eustache Church in Paris 785
Appendix 5: Technical Specification of the New Organ Built by van Den Heuvel in Paris, for St Eustache Church 787
Appendix 6: Stop List for the Organ in St Eustache Church in Paris—8000 Pipes 789
References 791
21 Marble, The Nondegradable Material for Pipe Organ 796
21.1 Introduction 796
21.2 Marble for Pipes Organs 797
21.3 Marble Organs 799
21.4 Physical and Mechanical Parameters of Marble 800
21.5 Summary 808
References 808
Index 810
Index of Names of Wind Instruments Makers, Composers and of Organ Builders and Places Where the Organs Were Built 825

Erscheint lt. Verlag 6.9.2019
Sprache englisch
Themenwelt Kunst / Musik / Theater Musik
Geisteswissenschaften
Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
ISBN-10 3-030-19175-3 / 3030191753
ISBN-13 978-3-030-19175-7 / 9783030191757
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 45,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen – Use-Cases – unternehmenseigene KI-Journey

von Ralf T. Kreutzer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
CHF 41,95