Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Transition to Abstract Mathematics -  Randall Maddox

Transition to Abstract Mathematics (eBook)

Learning Mathematical Thinking and Writing
eBook Download: PDF
2008 | 2. Auflage
384 Seiten
Elsevier Science (Verlag)
978-0-08-092271-3 (ISBN)
Systemvoraussetzungen
62,52 inkl. MwSt
(CHF 59,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Constructing concise and correct proofs is one of the most challenging aspects of learning to work with advanced mathematics. Meeting this challenge is a defining moment for those considering a career in mathematics or related fields. Mathematical Thinking and Writing teaches readers to construct proofs and communicate with the precision necessary for working with abstraction. It is based on two premises: composing clear and accurate mathematical arguments is critical in abstract mathematics, and that this skill requires development and support. Abstraction is the destination, not the starting point.

Maddox methodically builds toward a thorough understanding of the proof process, demonstrating and encouraging mathematical thinking along the way. Skillful use of analogy clarifies abstract ideas. Clearly presented methods of mathematical precision provide an understanding of the nature of mathematics and its defining structure.
After mastering the art of the proof process, the reader may pursue two independent paths. The latter parts are purposefully designed to rest on the foundation of the first, and climb quickly into analysis or algebra. Maddox addresses fundamental principles in these two areas, so that readers can apply their mathematical thinking and writing skills to these new concepts. From this exposure, readers experience the beauty of the mathematical landscape and further develop their ability to work with abstract ideas.
* Covers the full range of techniques used in proofs, including contrapositive, induction, and proof by contradiction
* Explains identification of techniques and how they are applied in the specific problem
* Illustrates how to read written proofs with many step by step examples
* Includes 20% more exercises than the first edition that are integrated into the material instead of end of chapter
* The Instructors Guide and Solutions Manual points out which exercises simply must be either assigned or at least discussed because they undergird later results

Constructing concise and correct proofs is one of the most challenging aspects of learning to work with advanced mathematics. Meeting this challenge is a defining moment for those considering a career in mathematics or related fields. A Transition to Abstract Mathematics teaches readers to construct proofs and communicate with the precision necessary for working with abstraction. It is based on two premises: composing clear and accurate mathematical arguments is critical in abstract mathematics, and that this skill requires development and support. Abstraction is the destination, not the starting point.Maddox methodically builds toward a thorough understanding of the proof process, demonstrating and encouraging mathematical thinking along the way. Skillful use of analogy clarifies abstract ideas. Clearly presented methods of mathematical precision provide an understanding of the nature of mathematics and its defining structure. After mastering the art of the proof process, the reader may pursue two independent paths. The latter parts are purposefully designed to rest on the foundation of the first, and climb quickly into analysis or algebra. Maddox addresses fundamental principles in these two areas, so that readers can apply their mathematical thinking and writing skills to these new concepts. From this exposure, readers experience the beauty of the mathematical landscape and further develop their ability to work with abstract ideas. - Covers the full range of techniques used in proofs, including contrapositive, induction, and proof by contradiction- Explains identification of techniques and how they are applied in the specific problem- Illustrates how to read written proofs with many step by step examples- Includes 20% more exercises than the first edition that are integrated into the material instead of end of chapter

Front Cover 1
A Transition to Abstract Mathematics 4
Copyright Page 5
Table of Contents 8
Why Read This Book? 14
Preface 16
Preface to the First Edition 18
Acknowledgments 22
Chapter 0. Notation and Assumptions 24
0.1 Set Terminology and Notation 24
0.2 Assumptions about the Real Numbers 26
0.2.1 Basic Algebraic Properties 26
0.2.2 Ordering Properties 28
0.2.3 Other Assumptions 30
Part 1: Foundations of Logic and ProofWriting 32
Chapter 1. Language and Mathematics 34
1.1 Introduction to Logic 34
1.1.1 Statements 34
1.1.2 Negation of a Statement 36
1.1.3 Combining Statements with AND 36
1.1.4 Combining Statements with OR 37
1.1.5 Logical Equivalence 39
1.1.6 Tautologies and Contradictions 41
1.2 If-Then Statements 41
1.2.1 If-Then Statements Defined 41
1.2.2 Variations on p . q 44
1.2.3 Logical Equivalence and Tautologies 46
1.3 Universal and Existential Quantifiers 50
1.3.1 The Universal Quantifier 51
1.3.2 The Existential Quantifier 52
1.3.3 Unique Existence 55
1.4 Negations of Statements 56
1.4.1 Negations of AND and OR Statements 56
1.4.2 Negations of If-Then Statements 57
1.4.3 Negations of Statements with the Universal Quantifier 59
1.4.4 Negations of Statements with the Existential Quantifier 60
1.5 How We Write Proofs 63
1.5.1 Direct Proof 63
1.5.2 Proof by Contrapositive 64
1.5.3 Proving a Logically Equivalent Statement 64
1.5.4 Proof by Contradiction 65
1.5.5 Disproving a Statement 65
Chapter 2. Properties of Real Numbers 68
2.1 Basic Algebraic Properties of Real Numbers 68
2.1.1 Properties of Addition 69
2.1.2 Properties of Multiplication 72
2.2 Ordering Properties of the Real Numbers 74
2.3 Absolute Value 76
2.4 The Division Algorithm 79
2.5 Divisibility and Prime Numbers 82
Chapter 3. Sets and Their Properties 86
3.1 Set Terminology 86
3.2 Proving Basic Set Properties 90
3.3 Families of Sets 94
3.4 The Principle of Mathematical Induction 101
3.5 Variations of the PMI 108
3.6 Equivalence Relations 114
3.7 Equivalence Classes and Partitions 120
3.8 Building the Rational Numbers 125
3.8.1 Defining Rational Equality 126
3.8.2 Rational Addition and Multiplication 127
3.9 Roots of Real Numbers 129
3.10 Irrational Numbers 130
3.11 Relations in General 134
Chapter 4. Functions 142
4.1 Definition and Examples 142
4.2 One-to-one and Onto Functions 148
4.3 Image and Pre-Image Sets 151
4.4 Composition and Inverse Functions 154
4.4.1 Composition of Functions 155
4.4.2 Inverse Functions 156
4.5 Three Helpful Theorems 158
4.6 Finite Sets 160
4.7 Infinite Sets 162
4.8 Cartesian Products and Cardinality 167
4.8.1 Cartesian Products 167
4.8.2 Functions Between Finite Sets 169
4.8.3 Applications 171
4.9 Combinations and Partitions 174
4.9.1 Combinations 174
4.9.2 Partitioning a Set 175
4.9.3 Applications 176
4.10 The Binomial Theorem 180
Part II: Basic Principles of Analysis 186
Chapter 5: The Real Numbers 188
5.1 The Least Upper Bound Axiom 188
5.1.1 Least Upper Bounds 189
5.1.2 Greatest Lower Bounds 191
5.2 The Archimedean Property 192
5.2.1 Maximum and Minimum of Finite Sets 193
5.3 Open and Closed Sets 195
5.4 Interior, Exterior, Boundary, and Cluster Points 198
5.4.1 Interior, Exterior, and Boundary 198
5.4.2 Cluster Points 199
5.5 Closure of Sets 201
5.6 Compactness 203
Chapter 6. Sequences of Real Numbers 208
6.1 Sequences Defined 208
6.1.1 Monotone Sequences 209
6.1.2 Bounded Sequences 210
6.2 Convergence of Sequences 213
6.2.1 Convergence to a Real Number 213
6.2.2 Convergence to Infinity 219
6.3 The Nested Interval Property 220
6.3.1 From LUB Axiom to NIP 221
6.3.2 The NIP Applied to Subsequences 222
6.3.3 From NIP to LUB Axiom 224
6.4 Cauchy Sequences 225
6.4.1 Convergence of Cauchy Sequences 226
6.4.2 From Completeness to the NIP 228
Chapter 7. Functions of a Real Variable 230
7.1 Bounded and Monotone Functions 230
7.1.1 Bounded Functions 230
7.1.2 Monotone Functions 231
7.2 Limits and Their Basic Properties 233
7.2.1 Definition of Limit 233
7.2.2 Basic Theorems of Limits 236
7.3 More on Limits 240
7.3.1 One-Sided Limits 240
7.3.2 Sequential Limits 241
7.4 Limits Involving Infinity 242
7.4.1 Limits at Infinity 243
7.4.2 Limits of Infinity 245
7.5 Continuity 247
7.5.1 Continuity at a Point 247
7.5.2 Continuity on a Set 251
7.5.3 One-Sided Continuity 253
7.6 Implications of Continuity 254
7.6.1 The Intermediate Value Theorem 254
7.6.2 Continuity and Open Sets 256
7.7 Uniform Continuity 258
7.7.1 Definition and Examples 259
7.7.2 Uniform Continuity and Compact Sets 262
Part III: Basic Principles of Algebra 264
Chapter 8. Groups 266
8.1 Introduction to Groups 266
8.1.1 Basic Characteristics of Algebraic Structures 266
8.1.2 Groups Defined 269
8.1.1 Basic Characteristics of Algebraic Structures 266
8.1.2 Groups Defined 269
8.2 Subgroups 275
8.2.1 Subgroups Defined 275
8.2.2 Generated Subgroups 277
8.2.3 Cyclic Subgroups 278
8.3 Quotient Groups 283
8.3.1 Integers Modulo n 283
8.3.2 Quotient Groups 286
8.3.3 Cosets and Lagrange’s Theorem 290
8.4 Permutation Groups 291
8.4.1 Permutation Groups Defined 291
8.4.2 The Symmetric Group 292
8.4.3 The Alternating Group 294
8.4.4 The Dihedral Group 296
8.5 Normal Subgroups 298
8.6 Group Morphisms 303
Chapter 9. Rings 310
9.1 Rings and Fields 310
9.1.1 Rings Defined 310
9.1.2 Fields Defined 315
9.2 Subrings 316
9.3 Ring Properties 319
9.4 Ring Extensions 324
9.4.1 Adjoining Roots of Ring Elements 324
9.4.2 Polynomial Rings 327
9.4.3 Degree of a Polynomial 328
9.5 Ideals 329
9.6 Generated Ideals 332
9.7 Prime and Maximal Ideals 335
9.8 Integral Domains 337
9.9 Unique Factorization Domains 342
9.10 Principal Ideal Domains 344
9.11 Euclidean Domains 348
9.12 Polynomials over a Field 351
9.13 Polynomials over the Integers 355
9.14 Ring Morphisms 357
9.14.1 Properties of Ring Morphisms 359
9.15 Quotient Rings 362
Index 368

PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
so wandeln Sie vermeintliche Schwächen in Stärken um

von Heiner Lachenmeier

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
CHF 19,50

von Péter Horváth; Ronald Gleich; Mischa Seiter

eBook Download (2024)
Vahlen (Verlag)
CHF 54,70
Bürgerliches Recht, Handelsrecht, Gesellschaftsrecht, …

von Wolfgang Kallwass; Peter Abels; Olaf Müller-Michaels

eBook Download (2024)
Vahlen (Verlag)
CHF 31,25