Nicht aus der Schweiz? Besuchen Sie lehmanns.de
How We Understand Mathematics - Jacek Woźny

How We Understand Mathematics

Conceptual Integration in the Language of Mathematical Description

(Autor)

Buch | Hardcover
X, 118 Seiten
2018 | 1st ed. 2018
Springer International Publishing (Verlag)
978-3-319-77687-3 (ISBN)
CHF 149,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. 

This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested in the engaging question of how mathematics works and why it works so well. 

1. Introduction.- 2. The Theoretical Framework and the Subject of Study.- 3. Sets.- 4. Mappings.- 5. Groups.- 6. Rings, Fields, and Vector Spaces.- 7. Summary and Conclusion.- Sources. 

Erscheinungsdatum
Reihe/Serie Mathematics in Mind
Zusatzinfo X, 118 p. 16 illus., 10 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 361 g
Themenwelt Geisteswissenschaften Sprach- / Literaturwissenschaft Sprachwissenschaft
Mathematik / Informatik Mathematik Graphentheorie
Schlagworte Abelian Groups • blending theory • Cayley's Theorem • combinatorics • Fields • finite groups • linear transformations • Mappings • Ring Theory • set theory • vector spaces
ISBN-10 3-319-77687-8 / 3319776878
ISBN-13 978-3-319-77687-3 / 9783319776873
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich