Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Exploratory Multivariate Analysis by Example Using R - Francois Husson, Sebastien Le, Jérôme Pagès

Exploratory Multivariate Analysis by Example Using R

Buch | Hardcover
262 Seiten
2017 | 2nd edition
CRC Press (Verlag)
978-1-138-19634-6 (ISBN)
CHF 169,30 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis.
Full of real-world case studies and practical advice, Exploratory Multivariate Analysis by Example Using R, Second Edition focuses on four fundamental methods of multivariate exploratory data analysis that are most suitable for applications. It covers principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, and hierarchical cluster analysis.

The authors take a geometric point of view that provides a unified vision for exploring multivariate data tables. Within this framework, they present the principles, indicators, and ways of representing and visualising objects that are common to the exploratory methods. The authors show how to use categorical variables in a PCA context in which variables are quantitative, how to handle more than two categorical variables in a CA context in which there are originally two variables, and how to add quantitative variables in an MCA context in which variables are categorical. They also illustrate the methods using examples from various fields, with related R code accessible in the FactoMineR package developed by the authors.

Francois Husson, Sebastien Le, Jérôme Pagès

Preface

Principal Component Analysis (PCA)

Correspondence Analysis (CA)

Multiple Correspondence Analysis (MCA)

Clustering

Visualisation

Appendix

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Computer Science & Data Analysis
Zusatzinfo 48 Tables, black and white; 39 Line drawings, black and white; 47 Halftones, black and white; 86 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 500 g
Themenwelt Geisteswissenschaften Psychologie
Mathematik / Informatik Mathematik
ISBN-10 1-138-19634-7 / 1138196347
ISBN-13 978-1-138-19634-6 / 9781138196346
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Psychiaterin spricht offen über ihre Bipolare Störung und zeigt, …

von Astrid Freisen

Buch | Softcover (2023)
Eden Books (Verlag)
CHF 29,90
warum wir fühlen, was wir sind

von Mark Solms

Buch | Hardcover (2023)
Klett-Cotta (Verlag)
CHF 48,95