Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Frontiers of Fundamental Physics and Physics Education Research (eBook)

eBook Download: PDF
2014 | 2014
XIX, 615 Seiten
Springer International Publishing (Verlag)
978-3-319-00297-2 (ISBN)

Lese- und Medienproben

Frontiers of Fundamental Physics and Physics Education Research -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In a knowledge-based society, research into fundamental physics plays a vital role not only in the enhancement of human knowledge but also in the development of new technology that affects everyday life.The international symposium series Frontiers of Fundamental Physics (FFP) regularly brings together eminent scholars and researchers working in various areas in physics to exchange expertise, ideas, results, and new research perspectives. The twelfth such symposium, FFP12, took place at the University of Udine, Italy, and covered diverse fields of research: astrophysics, high energy physics and particle physics, theoretical physics, gravitation and cosmology, condensed matter physics, statistical physics, computational physics, and mathematical physics. Importantly, it also devoted a great deal of attention to physics education research, teacher training in modern physics, and popularization of physics. The high scientific level of FFP12 was guaranteed by the careful selection made by scientific coordinators from among 250 submissions from 28 countries across the world. During the three days of the conference, nine general talks were delivered in plenary sessions, 29 invited talks were given in specific topic areas, and 59 oral presentations were made. This book presents a selection of the best contributions at FFP12 with the aim of acquainting readers with the most important recent advances in fundamental physics and in physics education and teacher development.

Frontiers of Fundamental Physics and PhysicsEducation Research 5
Contents 8
Introduction 16
Part IGeneral Talks 19
1 Two-Dimensional Anharmonic Crystal Lattices: Solitons, Solectrons, and Electric Conduction 20
1.1 Introduction 20
1.2 Soliton Assisted Electron Transfer in 1d Lattices 21
1.3 Two-Dimensional Crystal Lattices 24
1.4 Two-Dimensional Crystal Lattices. Pauli's Master Equation Approach 25
1.5 Percolation and Other Features in 2d-Lattices 26
1.6 Concluding Remarks 27
References 28
2 Generating the Mass of Particles from Extended Theories of Gravity 31
2.1 Introduction 31
2.2 The 5D-space and the Reduction to 4D-dynamics 33
2.3 Massive Gravitational States and the Induced Symmetry Breaking 35
2.4 Discussion and Conclusions 41
References 43
3 Enrico Fermi and Ettore Majorana: So Strong, So Different 45
3.1 The Formation Years Until the Doctoral Degree (1929) 46
3.2 From the Doctoral Degree to the Private Professorship (1929--1932) 48
3.3 The Visit to Lipsia (1933) 49
3.4 The Silence (1933--1937) 52
3.5 Ettore Majorana Full Professor of Theoretical Physics at the University of Naples (1938) 52
3.6 The Disappearence (1938) 53
3.7 Conclusions 54
References 55
4 Physics Teachers' Education (PTE): Problems and Challenges 56
4.1 Introduction 56
4.2 Students' Achievements and Teachers' Competencies 57
4.3 Research-Based PTE Interventions 60
4.3.1 Energy Intervention Module for Prospective Primary Teachers Education (FIME) 61
4.3.2 Research Based Quantum Mechanics Formation for in Service Teachers 63
4.3.3 PHYSWARE Model Workshops 66
4.3.4 MUSE Project 67
4.4 Some Recommendations for PTE 67
References 68
Part IIAstronomy and Astrophysics 71
5 Simulation of High Energy Emission from Gamma-Ray Bursts 72
5.1 Introduction 72
5.2 Synchrotron Emission by Relativistic Shocks 74
5.3 Formulation 76
5.4 Simulations 78
5.4.1 Compton Scattering, Delayed High Energy Component, and Other Issues 81
References 81
6 Effects of Modified Dispersion Relations and Noncommutative Geometry on the Cosmological Constant Computation 83
6.1 Introduction 83
6.2 High Energy Gravity Modification: the Example of Non Commutative Theories and Gravity's Rainbow 86
References 91
7 Testing the Nature of Astrophysical Black Hole Candidates 92
7.1 Introduction 92
7.2 Standard Accretion Disk Model 93
7.3 Radiative Efficiency in Kerr and Non-Kerr Backgrounds 95
7.4 Constraining Deviations from the Kerr Geometry 96
7.5 Conclusions 97
References 98
8 Are Anomalous Cosmic Flows A Challenge for LCDM? 99
8.1 Introduction 99
8.2 Realization of Rare Events 100
8.3 Bulk Flow and Asymmetric Distribution of Matter 101
8.3.1 Numerical Set-up 101
8.3.2 Dynamical Origin of the Bulk Flow 103
8.4 Bulk Flow as a Linear Quantity 104
8.5 Conclusion 105
References 105
9 New Strength to Planck's Length Choice 106
9.1 Introduction 106
9.2 Universe Mass' Calculation Through Heisenberg Uncertainity Principle 107
9.3 Universe Mass' Calculation Through 2008 WMAP Nasa Spacecraft Data 108
9.4 Conclusions 108
References 109
Part IIIParticle Physics and High Energy Physics 110
10 Results from the Atlas Experiment at the LHC 111
10.1 Introduction 111
10.2 Standard Model Physics Measurements 112
10.2.1 Hard QCD Results 112
10.2.2 W and Z Boson Cross Section Measurements 113
10.2.3 Top Quark Measurements 114
10.3 Direct Searches 114
10.3.1 SM Higgs Boson Searches 115
10.3.2 SUSY Searches 118
10.4 Conclusions 118
10.5 Post Scriptum 118
References 119
11 Covariant Perturbations Theory in General Multi-Fluids Cosmology 120
11.1 Introduction 120
11.2 Perfect Fluid as a Scalar Field 121
11.3 Constraints at Homogeneous Order 122
11.4 Toward Observables at Linear Order 123
11.4.1 Linear Perturbations 123
11.4.2 Quadratic Action at First Order 124
References 124
12 Susy Results at the LHC with the Atlas Detector 125
12.1 Introduction 125
12.2 0-Lepton Final State 126
12.3 1-Lepton Final State 127
12.4 2-Leptons Final State 128
12.5 Conclusions 128
References 129
Part IVGravitation and Cosmology 130
13 Dark Energy from Curvature and Ordinary Matter Fitting Ehlers-Pirani-Schild: Foundational Hypothesis 131
13.1 Introduction 131
13.2 Ehlers-Pirani-Schild-Theory 133
13.2.1 A. Outline of Ehelers-Pirani-Shild Construction 134
13.2.2 B. Hypotesis 135
13.3 Elehers-Pirani-Schild and General Relativity 136
13.4 Elehers-pirani-schild revised formalism 138
13.5 The Ehelers-Pirani-Schild approach for f(r)-Gravity 139
13.6 A New Paradigm for Gravity 143
13.7 Conclusions and Remarks 143
References 144
14 The Palatini Approach Beyond Einstein's Gravity 145
14.1 Introduction 145
14.2 Quantum Gravity Phenomenology. Introduction of a Minimum Length 146
14.3 Nonsingular Bouncing Palatini Cosmologies 149
14.4 Black Holes 152
14.5 Conclusion 153
References 154
15 Extended Gravity from Noncommutativity 155
15.1 Introduction 155
15.2 NC Geometry Approaches 157
15.3 Twists and -Noncommutative Manifolds 158
15.4 Noncommutative Vierbein Gravity Coupled to Fermions 160
15.5 Classical Action 160
15.6 Noncommutative Gauge Theory and Lorentz Group 161
15.7 Noncommutative Gravity Action and its Symmetries 162
15.8 Gauge Invariance 162
15.9 Diffeomorphisms Invariance 163
15.10 Reality of the Action 163
15.11 Charge Conjugation Invariance 163
15.12 Seiberg-Witten map (SW map) 165
15.13 Action at First Order in 166
15.14 Conclusions 167
15.15 A. Gamma Matrices in D = 4 167
References 168
16 Quantum Gravity: A Heretical Vision 169
16.1 Only Theories 169
16.2 What Is Quantum Theory? What Quantization Is and Is Not 170
16.3 Measurability Analysis 171
16.4 Process is Primary, States are Secondary 172
16.5 Poisson Brackets Versus Peierls Brackets 172
16.6 What Is Classical General Relativity? 173
16.7 The Newtonian Limit, Multipole Expansion of Gravitational Radiation 174
16.8 Unimodular Conformal and Projective Relativity 175
16.9 Zero Rest Mass Radiation Fields, Huygens' Principle, and Conformal Structure 176
16.10 Zero Rest-Mass Near Fields and Projective Structure 177
References 177
17 From Clock Synchronization to Dark Matter as a Relativistic Inertial Effect 179
17.1 Introduction 179
17.2 ADM Tetrad Gravity and the York Canonical Basis: Identification of the Inertial and Tidal Variables and the Hamiltonian Post-Minkowskian Linearization 180
17.3 Post-Newtonian Particle Equations, Dark Matter as a Relativistic Inertial Effect Due to the York Time and the Gauge Problem in GR 182
References 184
18 Experimental Tests of Quantum Mechanics: Pauli Exclusion Principle and Spontaneous Collapse Models 185
18.1 Introduction 186
18.2 The VIP Experiment 187
18.2.1 The Experimental Method 187
18.2.2 The VIP Setup 187
18.3 The VIP Experimental Results 188
18.4 Future Perspectives 189
References 190
19 CMB Anisotropy Computations Using Hydra Gas Code 192
19.1 Introduction 193
19.2 Map Construction 193
19.3 Evaluating Variables to Perform Integrations 194
19.4 Description of the Simulations 195
19.5 Previous Results and Perspectives 196
19.6 Current Work and Projects 197
References 198
20 Unimodular Conformal and Projective Relativity: An Illustrated Introduction 200
20.1 Introduction 200
20.2 Unimodular Conformal and Projective Relativity 201
20.3 Compatibility Conditions 204
20.4 Conclusion 205
References 206
Part VCondensed Matter Physics 207
21 Universality of Charge Transport Across Disordered Nanometer-Thick Oxide Films 208
21.1 Introduction 208
21.2 Universal Distribution of Transparencies in Dirty Subnanometer-Thick Oxide Films 209
21.3 Universal Current-Voltage Characteristic for Disordered Several Nm-Thick Insulating Layers 211
21.4 Conclusions 213
References 214
Part VIStatistical Physics 215
22 Pursuit and Evasion with Temporal Non-locality and Stochasticity 216
22.1 Introduction 216
22.2 Basic Model 217
22.3 Extended Model 218
22.3.1 Effects of Stochasticity 218
22.3.2 Effects of Temporal Non-locality 218
22.3.3 Effects of Conversion 219
22.4 Discussion 219
References 220
Part VIITheoretical Physics 222
23 Behaviour at Ultra High Energies 223
23.1 Introduction 223
23.2 Extra Relativistic Effects 226
23.3 Ultra High Energy Particles 227
23.4 Ultra High Energy Particles 229
23.5 Discussion 231
References 233
24 Toward ``Ghost Imaging'' with Cosmic Ray Muons 234
24.1 Introduction 234
24.2 Ghost Imaging with Photons 235
24.3 Cosmic Ray Muons and the EEE Telescopes 238
24.4 Toward Ghost Imaging with Cosmic Ray Muons 239
24.5 Conclusion 243
References 244
25 The Dark Energy Universe 245
25.1 Introduction 245
25.2 Cosmology 247
25.3 Discussion 250
References 253
26 New Aspects of Collective Phenomena at Nanoscales in Quantum Plasmas 255
26.1 Introduction 255
26.2 The Governing Equations 257
26.2.1 Linear Quantum Plasma Waves 259
26.2.2 Potential Distribution Around an Isolated Ion 260
26.3 Stimulated Scattering of Electromagnetic Waves 264
26.3.1 Nonlinear Dispersion Relations 266
26.3.2 Growth Rates 267
26.4 Summary and Conclusions 268
References 269
27 String Theory and Regularisation of Space--Time Singularities 271
27.1 Introduction 271
27.2 String Theory and Singularities 272
27.3 Yang-Mills from Discrete Light Cone Quantization 274
27.4 Regularisation of the Singularity 275
27.5 Discussion 276
References 276
28 Fuzzy Space--Time, Quantization and Gauge Invariance 278
References 281
29 On Fluid Maxwell Equations 282
29.1 Introduction 282
29.2 Equations of Fluid Mechanics, Compared with Electromagnetism 284
29.2.1 Equations of Fluid Mechanics 284
29.2.2 Equations of Electromagnetism 285
29.2.3 Analogy in Wave Property 285
29.3 Fluid Maxwell Equations 286
29.3.1 Derivation 287
29.4 Equation of Sound Wave 288
29.5 Equation of Motion of a Test Particle in a Flow Field 288
29.6 Summary 289
References 290
30 Dark Energy Condensate and Vacuum Energy 291
30.1 Introduction 291
30.2 Dark Energy from Decay of Dark Matter 293
30.3 Condensation of an Interacting Dark Energy 294
30.4 Vacuum Energy 297
References 298
31 General Relativistic Quantum Theories: Foundations, the Leptons Masses 299
31.1 Introduction: Summary 299
31.2 Fiber Bundles and Quantum Bundles 300
31.3 Derivatives Dynamics 301
31.3.1 Covariant Derivatives 301
31.3.2 Schrödinger Equation 301
31.3.3 Explicit Expression of the Covariant Derivative 302
31.3.4 Commutations and Anti-commutations Relations 303
31.4 Quantum Fields 304
31.5 Interactions Self-Energies 304
31.5.1 Interaction-Energy Operator 304
31.5.2 Particles Self-Masses 305
31.5.3 Counter-Terms 305
31.6 Leptons Masses 306
References 307
32 Direction of Time from the Violation of Time Reversal Invariance 308
32.1 Introduction 308
32.2 Effect of T Violation in a Universe Without a Presumed Temporal Direction 309
32.3 New Kind of Irreversibility 311
32.4 Superposition of Matter and Antimatter 313
32.5 Discussion 314
References 314
33 Study of Stability Matter Problem in Micropolar Generalised Thermoelastic 315
33.1 Introduction 316
33.2 Formulation and Solution of the Problem 316
33.3 Applications 320
33.4 Inversion of the Transforms 327
33.5 Numerical Results and Discussion 327
33.6 Discussion 327
33.7 Conclusion 330
33.8 Nomenclature 330
References 330
Part VIIIMathematical Physics 332
34 Relativistic Classical and Quantum Mechanics: Clock Synchronization and Bound States, Center of Mass and Particle Worldlines, Localization Problems and Entanglement 333
34.1 Introduction 333
34.2 Non-inertial Frames in Minkowski Space-Time and Radar 4-Coordinates 335
34.3 Classical Relativistic Isolated Systems 336
34.4 Relativistic Center of Mass, Particle World-Lines and Bound States 337
34.5 Relativistic Quantum Mechanics 338
34.6 Relativistic Entanglement and Localization Problems 339
34.7 Open Problems 340
References 341
35 A New Computational Approach to Infinity for Modelling Physical Phenomena 342
35.1 Introduction 342
35.2 A New Methodology for Performing Computations with Infinite and Infinitesimal Quantities 344
35.3 Examples of the Usage of the New Computational Methodology 348
References 352
Part IXComputational Physics 354
36 Seismic Hazard Assesment: Parametric Studies on Grid Infrastructures 355
36.1 Neo-Deterministic Seismic Hazard Assessment 356
36.2 Uncertainties in Hazard Maps 359
36.3 Implementation of Seismological Codes on Grid 359
36.4 Preliminary Results 360
36.5 Conclusions and Perspectives 361
References 362
Part XPhysics Teaching/Learning and Teachers Formation 363
37 Learning Scenarios for a 3D Virtual Environment: The Case of Special Relativity 364
37.1 Introduction 364
37.2 Overview of the Research 365
37.3 Students' Difficulties in Special Relativity: Elements of the State of the Art 366
37.4 Confronting Students to the 3D Virtual Environment 367
37.5 Conclusion and Perspectives 370
References 370
38 Stories in Physics Education 371
38.1 Introduction 371
38.2 The Disciplinary Framework for Physics Education in Primary School 372
38.3 Stories and Scientific Inquiry 374
38.4 Hints for Education Research 376
38.5 The Pico's Stories 377
38.5.1 Pico and His Friends at the Luna Park (1st--2nd Grades) 378
38.5.2 Rupert and the Dream of a Swimming Pool (3rd--4th Grades) 378
38.5.3 Results of Experimentations with Children 379
38.5.4 Transition from the Description to the Interpretation Levels 380
38.5.5 Identification of the Relevant Variables 380
38.5.6 Generalization of Meanings 380
38.6 Conclusions 381
References 381
39 How Physics Education Research Contributes to Designing Teaching Sequences 383
39.1 Introduction 383
39.2 Implications of P.E.R. to Designing Teaching Sequences 384
39.3 Teaching Sequence of Electromagnetic Induction (EMI) 386
39.4 Assessment of Teaching Sequence and Conclusions 389
References 391
40 Quantum Physics in Teacher Education 393
40.1 Introduction 393
40.2 Theoretical Framework 394
40.2.1 Teaching of Quantum Physics 394
40.2.2 Teacher Professionalisation 395
40.3 Design of Study 396
40.3.1 Research Questions 396
40.3.2 Methodology 397
40.4 Results 397
40.4.1 Results of Analysis of Lectures 397
40.4.2 Results of Pilot Study with Teacher Students 398
40.4.3 Results of Questionnaire 400
40.5 Future Work 401
40.6 Conclusion 401
References 401
41 Using a Sociocultural Approach in Teaching Astronomy Concepts with Children of Primary School 403
41.1 Introduction 403
41.2 Aim of the Study 404
41.3 Method 405
41.3.1 Participants 405
41.3.2 Study Design 405
41.3.3 Materials and Data Collection 406
41.3.4 Procedures 407
41.3.5 Data Analysis of the Results 408
41.4 Conclusion 409
References 410
42 Dynamic Modelling with ``MLE-Energy Dynamic'' for Primary School 411
42.1 Introduction 411
42.2 Dynamic Modelling Software for Primary School 413
42.3 Features of MLE Dynamic Software 413
42.4 Conclusions 415
References 415
43 The Story Format and the Cycle of Meaning Construction for Physics Education in Primary Schools 416
43.1 Introduction 416
43.2 The Story as Context to Improve the Cycle of Meaning Construction 417
43.3 Features of Story Format and Examples from the Story ``Rupert and the Dream of a Swimming Pool'' 418
43.4 Conclusions 421
References 422
44 Teaching Modern Physics for Future Physics Teachers 423
44.1 Instructions 423
44.2 Methodology and Discussions 424
44.3 Concluding Remarks 427
References 427
45 An Alternative Approach to Canonical Quantization for Introducing Quantum Field Theory: The Double-Slit Experiment Re-Examined 428
45.1 Introduction to the Research Problem 428
45.2 Outreach Languages and School Teaching Proposal on Contemporary Physics 429
45.3 Pros and Cons of the Canonical Quantization Procedure 430
45.4 Alternative Approach to Quantum Field Theory 431
45.4.1 Cultural Choices 431
45.4.2 Operative Criteria: Rough Structure of a Conceptual Path 432
45.5 Final Remarks 434
References 435
46 Basic Concept of Superconductivity: A Path for High School 436
46.1 Introduction 436
46.2 Superconductivity and Classical Physics 437
46.3 The Rational of the Path on Meissner Effect for Upper Secondary School Students 438
46.4 From Electron Conduction to the Superconduction of the Cooper Pairs 440
46.5 Experimentation with Students 441
46.6 Conclusion 442
References 443
47 An Experimental Approach of Nodes Towards the Electric Potential for Students and Teachers 444
47.1 Introduction 444
47.2 The Vertical Proposal on Electrostatics 446
47.3 The path 447
47.4 Data and Discussion 450
References 452
48 From Heuristics to Humble Theories in Physics Education: The Case of Modelling Personal Appropriation of Thermodynamics in Naturalistic Settings 454
48.1 Introduction 454
48.2 Methodological Framework 455
48.3 The Educational Reconstruction of Thermodynamics 456
48.4 Data Analysis and Results 456
48.4.1 Data Sources 456
48.4.2 Working out an Operational Definition of Appropriation 456
48.4.3 Testing the Definition Against Complex Data 458
48.5 Final Remarks. Toward a Humble Theory 460
References 461
49 Theory Versus Experiment: The Case of the Positron 462
49.1 Introduction 462
49.2 Theory Versus Experiment in the Positron Discovery 463
49.3 Anderson's Experiment 464
49.4 Blackett and Occhialini' Synthesis 466
49.5 Concluding Remarks 467
References 467
50 Mass from Classical to Relativistic Context: A Proposal of Conceptual Unification Experimented in the IDIFO3 Summer School 469
50.1 Mass 469
50.2 Learning Problems 470
50.3 Relativistic Mass Debate 471
50.4 The Activity 472
50.5 Data 472
50.5.1 Analysis and Results 473
50.6 Conclusions 476
References 476
51 Theories as Crucial Aspects in Quantum Physics Education 478
51.1 Introduction 478
51.2 Nature of Difficulties: Theories 479
51.3 Nature of Difficulties: Quantum Physics 480
51.4 A Pre-step Solution for Quantum Physics Education 481
51.5 A More Deep Difficulty 482
51.6 Conclusions 482
References 483
52 An Interference/Diffraction Experiment for Undergraduates 485
52.1 Introduction 485
52.2 Theoretical Background 486
52.3 Building the Setup: Role of the Experimental Parameters 488
52.4 Conclusion 491
References 492
53 Disciplinary Knots and Learning Problems in Waves Physics 493
53.1 Introduction 493
53.2 An Extracurricular Learning Path on Waves 494
53.3 Shive Wave Machine 495
53.4 Further Activities in Laboratory 496
53.5 Some Disciplinary Knots in Wave Physics 497
53.6 Learning Problems 498
53.7 Conclusions 499
References 499
54 Lorentz' Force as a Tool for Physics Inquiry: Studying Particle Tracks in Cloud and Streamer Chambers 500
54.1 Introduction 500
54.2 The Thomson Experiment and the Lorentz Force on Electrons 501
54.3 Particle Tracks in Wilson Chamber: The Anderson Experiment 503
54.4 The Pion-Muon-Electron Decay and the Invisible neutrinos 504
54.5 Results and final remarks 505
References 506
55 Active Learning by Innovation in Teaching (Alit) 507
55.1 Introduction 507
55.2 Active Learning by Innovation in Teaching Model to Develop Student-Centered Education 508
55.2.1 What Do Teachers Do? 510
55.2.2 What Do Students Do? 511
55.3 Students' Role in ALIT 512
55.4 Conclusions 512
References 513
56 Capacitors, Tanks, Springs and the Like: A Multimedia Tutorial 515
56.1 Introduction 515
56.2 The Two-Capacitor(-like) Problem(s) 516
56.3 The Multimedia Tutorial 519
References 521
57 Energy Exchange by Thermal Radiation: Hints and Suggestions for an Inquiry Based Lab Approach 522
57.1 Introduction 522
57.2 Theoretical Background 523
57.3 Method 525
57.4 The Lab Activities 525
57.5 Discussion and Conclusions 528
References 528
58 Investigating Teacher Pedagogical Content Knowledge of Scientific Inquiry 530
58.1 Introduction 530
58.2 Theoretical Background 531
58.3 Method 532
58.4 Results 533
58.5 Discussion and Conclusions 535
References 536
59 Learning Knots on Electrical Conduction in Metals 538
59.1 Introduction 538
59.2 Electrical Circuits 539
59.3 Phenomenological Relationship Between Electrostatic and Electrodynamics 540
59.4 Link Between the Macroscopic and Microscopic Level of Processes Description 540
59.5 Use of Simulations 541
59.6 Analogies 541
59.7 Implications for Physics Education 542
References 542
60 Measures of Radioactivity: A Tool for Understanding Statistical Data Analysis 544
60.1 An Early Experience 544
60.2 A Learning Path on Nuclear Phenomena 545
60.2.1 A Brief Introduction to Nuclear Phenomena 545
60.2.2 The Experimental Setup 545
60.2.3 An Introduction to Statistical Data Analysis 547
60.3 Measures and Statistical Data Analysis 547
60.4 Conclusion 548
References 548
61 Active and Cooperative Learning Paths in the Pigelleto's Summer School of Physics 549
61.1 The Pigelleto's Summer School of Physics 549
61.2 Some Learning Path 551
61.3 Communicate Physics 551
61.4 Conclusion 552
References 552
62 The Challenge of Contemporary Society on Science Education: The Case of Global Warming 554
62.1 A Research on Teaching About Complexity 554
62.2 First Results of the Research Project 555
62.3 Future Developments 556
References 557
63 Magnetic Field as Pseudovector Entity in Physics Education 558
63.1 Introduction 558
63.2 Context and Sample 559
63.3 Instruments and Methods 559
63.4 Data 560
63.5 Data Analysis 561
63.6 Conclusions and Further Remarks 562
References 562
64 A Model of Concept Learning in Physics 564
64.1 Introduction 564
64.2 The Model 565
64.3 Results 566
64.4 Discussion 567
References 568
Part XIPopularization of Physics 569
65 Invitation to Physics not Only for Gifted Pupils 570
65.1 Introduction 570
65.2 Types of Activities in Talnet 572
65.2.1 Team's Enquiry Activities-Doing Physics in a Team 573
65.3 Conclusions 575
References 576
66 On INFN 2010 Physics Popularization School: Video Report 577
Reference 579
67 Popularisation of Physics in the Wild 580
67.1 Introduction 580
67.2 Learning in the Wild and Citizen Science 581
67.3 Virtual Worlds 582
67.4 Science Popularisation in the Virtual Worlds 583
67.5 Conclusions 585
References 586

Erscheint lt. Verlag 20.3.2014
Reihe/Serie Springer Proceedings in Physics
Springer Proceedings in Physics
Zusatzinfo XIX, 615 p. 120 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Geisteswissenschaften
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Sozialwissenschaften Pädagogik
Sozialwissenschaften Politik / Verwaltung
Technik
Schlagworte ATLAS Experiment • Computational Physics • cosmic rays • dark energy • Frontiers of Fundamental Physics • gamma-rays • Gauge Theories • Gravitation • High Energy Physics • MAGIC Telescope • Physics education • physics teaching • quantum mechanics • Quantum Theories • String Theory • theoretical physics
ISBN-10 3-319-00297-X / 331900297X
ISBN-13 978-3-319-00297-2 / 9783319002972
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
für Studierende der Natur- und Ingenieurwissenschaften

von Heribert Stroppe; Peter Streitenberger; Eckard Specht

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 38,95