Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Nonparametric Methods in Statistics with SAS Applications - Olga Korosteleva

Nonparametric Methods in Statistics with SAS Applications

Buch | Softcover
196 Seiten
2013
Crc Press Inc (Verlag)
978-1-4665-8062-6 (ISBN)
CHF 125,65 inkl. MwSt
  • Titel z.Zt. nicht lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book teaches students how to apply nonparametric techniques to statistical data from hypotheses to regression modeling, time-to-event analysis, density estimation, and resampling methods. SAS codes for all examples are given in the text. Data sets for the exercises are available.
Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods.

The text begins with classical nonparametric hypotheses testing, including the sign, Wilcoxon sign-rank and rank-sum, Ansari-Bradley, Kolmogorov-Smirnov, Friedman rank, Kruskal-Wallis H, Spearman rank correlation coefficient, and Fisher exact tests. It then discusses smoothing techniques (loess and thin-plate splines) for classical nonparametric regression as well as binary logistic and Poisson models. The author also describes time-to-event nonparametric estimation methods, such as the Kaplan-Meier survival curve and Cox proportional hazards model, and presents histogram and kernel density estimation methods. The book concludes with the basics of jackknife and bootstrap interval estimation.

Drawing on data sets from the author’s many consulting projects, this classroom-tested book includes various examples from psychology, education, clinical trials, and other areas. It also presents a set of exercises at the end of each chapter. All examples and exercises require the use of SAS 9.3 software. Complete SAS codes for all examples are given in the text. Large data sets for the exercises are available on the author’s website.

Olga Korosteleva is an associate professor of statistics in the Department of Mathematics and Statistics at California State University, Long Beach (CSULB). She received a Ph.D. in statistics from Purdue University.

Hypotheses Testing for Two Samples. Hypotheses Testing for Several Samples. Tests for Categorical Data. Nonparametric Regression. Nonparametric Generalized Additive Regression. Time-to-Event Analysis. Univariate Probability Density Estimation. Resampling Methods for Interval Estimation. Appendices. Recommended Books. Index of Notation. Index.

Reihe/Serie Chapman & Hall/CRC Texts in Statistical Science
Zusatzinfo 68 Tables, black and white; 22 Illustrations, black and white
Verlagsort Bosa Roca
Sprache englisch
Maße 156 x 234 mm
Gewicht 360 g
Themenwelt Geisteswissenschaften Psychologie Allgemeine Psychologie
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
ISBN-10 1-4665-8062-3 / 1466580623
ISBN-13 978-1-4665-8062-6 / 9781466580626
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Grundkurs

von E. Bruce Goldstein; Laura Cacciamani; Karl R. Gegenfurtner

Buch | Hardcover (2023)
Springer (Verlag)
CHF 83,95