Elements of Statistical Mechanics (eBook)
416 Seiten
Elsevier Science (Verlag)
978-0-08-053080-2 (ISBN)
The first six chapters of the book provide a thorough introduction to the basic methods of statistical mechanics and indeed the first four may be used as an introductory course in themselves. The last three chapters offer more detail on the equation of state, with special emphasis on the van der Waals gas, the second-quantisation approach to many-body systems, with an examination of two-time temperature-dependent Green functions, phase transitions, including various approximation methods for treating the Ising model, a brief discussion of the exact solution of the two-dimensional square Ising model, and short introductions to renormalisation group methods and the Yang and Lee theory of phase transitions. In the problem section which follows each chapter the reader is asked to complete proofs of basic theory and to apply that theory to various physical situations. Each chapter bibliography includes papers which are of historical interest. A further help to the reader are the solutions to selected problems which appear at the end of the book.
Following the Boltzmann-Gibbs approach to statistical mechanics, this new edition of Dr ter Haar's important textbook, Elements of Statistical Mechanics, provides undergraduates and more senior academics with a thorough introduction to the subject. Each chapter is followed by a problem section and detailed bibliography. The first six chapters of the book provide a thorough introduction to the basic methods of statistical mechanics and indeed the first four may be used as an introductory course in themselves. The last three chapters offer more detail on the equation of state, with special emphasis on the van der Waals gas; the second-quantisation approach to many-body systems, with an examination of two-time temperature-dependent Green functions; phase transitions, including various approximation methods for treating the Ising model, a brief discussion of the exact solution of the two-dimensional square Ising model, and short introductions to renormalisation group methods and the Yang and Lee theory of phase transitions. In the problem section which follows each chapter the reader is asked to complete proofs of basic theory and to apply that theory to various physical situations. Each chapter bibliography includes papers which are of historical interest. A further help to the reader are the solutions to selected problems which appear at the end of the book.
Front Cover 1
Elements of Statistical Mechanics 4
Copyright Page 5
Table of Contents 6
Preface to the third edition 10
Preface to the second edition 12
Preface to the first edition 14
Chapter 1. The Maxwell distribution 16
1.1. The Maxwell distribution 16
1.2. The perfect gas law 19
1.3. The van der Wads law 22
1.4. Collisions 26
1.5. The H-theorem 34
1.6. The connection between H and entropy 39
1.7. The connection between H and probability 41
Problems 44
Bibliographical notes 47
Chapter 2. The Maxwell-Boltzmann distribution 51
2.1. The barometer formula 51
2.2. The ?–space 53
2.3. The H-theorem H and probability
2.4. Applications of the Maxwell-Boltzmann formula 56
2.5. The Boltzmann transport equation 61
2.6. External parameters 63
2.7. The phase integral connection with thermodynamics
Problems 67
Bibliographical notes 72
Chapter 3. The partition function 74
3.1. The partition function 74
3.2. The harmonic oscillator 76
3.3. Planck's radiation law 82
3.4. The transition to classical statistics 86
3.5. The rigid rotator: the hydrogen molecule 92
Problems 96
Bibliographical notes 100
Chapter 4. Bose-Einstein and Fermi-Dirac statistics 103
4.1. Deviations from Boltzmann statistics 103
4.2. The probability aspect of statistics 105
4.3. The elementary method of statistics 112
4.4. Connection with thermodynamics 115
4.5. The Darwin-Fowler method 119
4.6. The perfect Boltzmann gas 126
4.7. The perfect Bose-Einstein gas 129
4.8. The perfect Fermi-Dirac gas 139
4.9. Are all particles bosons or fermions? 146
Problems 151
Bibliographical notes 159
Chapter 5. Classical ensembles 162
5.1. The ?–space ensembles
5.2. Stationary ensembles 170
5.3. The macrocanonical ensemble 173
5.4. Fluctuations in a macrocanonical ensemble 177
5.5. The entropy in a macrocanonical ensemble 179
5.6. The coupling of two macrocanonical ensembles 184
5.7. Microcanonical ensembles 189
5.8. Application: the perfect gas 192
5.9. Grand ensembles 194
5.10. Fluctuations in a canonical grand ensemble 199
5.11. The coupling of two canonical grand ensembles 208
5.12. Application of the theory of classical grand ensembles to a perfect gas 211
5.13. The relationship between ensembles and actually observed systems 214
5.14. Ergodic theory snd the H-theorem in ensemble theory 219
Problems 225
Bibliographical notes 228
Chapter 6. The ensembles in quantum statistics 231
6.1. The density matrix 231
6.2. Pure case and mixed case 236
6.3. Macrocanonical ensembles in quantum statistics 239
6.4. Canonical grand ensembles in quantum statistics 242
6.5. The H-theorem in quantum statistics 249
6.6. The perfect Boltzmann gas 254
6.7. The perfect Bose-Einstein gas 257
6.8. The perfect Fermi-Dirac gas 261
6.9. The Saha equilibrium 263
6.10. The relativistic electron gas 265
Problems 274
Bibliographical notes 280
Chapter 7. The equation of state of an imperfect gas 283
7.1. The equation of state 283
7.2. The van der Waals equation of state 289
Problems 299
Bibliographical notes 301
Chapter 8. The occupation number representation 303
8.1. Quasi-particles and elementary excitations 303
8.2. The occupation number representation for bosons 309
8.3 The occupation number representation for fermions 315
8.4. The Green function method in statistical mechanics 316
Problems 326
Bibliographical notes 328
Chapter 9. Phase transitions 330
9.1. Introduction 330
9.2. The liquid drop model of condensation 333
9.3. Mayer’s theory of condensation 338
9.4. Yang and Lee’s theory of phase transitions 343
9.5. The Ising model of ferromagnetism 350
9.6. The mean-field approximation 357
9.7. The quasi-chemical approximation 362
9.8. Critical phenomena 365
9.9. Some exact results 376
Problems 382
Bibliographical notes 386
Solutions to Selected Problems 390
Index 410
Erscheint lt. Verlag | 6.4.1995 |
---|---|
Sprache | englisch |
Themenwelt | Geisteswissenschaften ► Psychologie |
Naturwissenschaften ► Chemie ► Physikalische Chemie | |
Naturwissenschaften ► Physik / Astronomie ► Angewandte Physik | |
Naturwissenschaften ► Physik / Astronomie ► Thermodynamik | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
ISBN-10 | 0-08-053080-X / 008053080X |
ISBN-13 | 978-0-08-053080-2 / 9780080530802 |
Haben Sie eine Frage zum Produkt? |
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich