Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Gentzen Calculi for Modal Propositional Logic (eBook)

eBook Download: PDF
2010
XII, 224 Seiten
Springer Netherlands (Verlag)
978-90-481-9670-8 (ISBN)

Lese- und Medienproben

Gentzen Calculi for Modal Propositional Logic -  Francesca Poggiolesi
Systemvoraussetzungen
139,09 inkl. MwSt
(CHF 135,85)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book is about Gentzen calculi for (the main systems of) modal logic. It is divided into three parts. In the first part we introduce and discuss the main philosophical ideas related to proof theory, and we try to identify criteria for distinguishing good sequent calculi. In the second part we present  the several attempts made from the 50's until today to provide modal logic with Gentzen calculi. In the third and and final part we analyse new calculi for modal logics, called tree-hypersequent calculi, which were recently introduced by the author. We show in a precise and clear way the main results that can be proved with and about them.

 


The book is about Gentzen calculi for (the main systems of) modal logic. It is divided into three parts. In the first part we introduce and discuss the main philosophical ideas related to proof theory, and we try to identify criteria for distinguishing good sequent calculi. In the second part we present the several attempts made from the 50's until today to provide modal logic with Gentzen calculi. In the third and and final part we analyse new calculi for modal logics, called tree-hypersequent calculi, which were recently introduced by the author. We show in a precise and clear way the main results that can be proved with and about them.

Preface 6
Contents 10
Part I An Overview of the Sequent Calculus 13
1 What Is a Good Sequent Calculus? 14
1.1 The Sequent Calculus Gcl 14
1.2 Formal Remarks 18
1.3 Philosophical Remarks 23
1.3.1 Analyticity 23
1.3.2 Logicality 25
1.3.3 From Logicality to Inferentialism 27
1.3.4 Harmony 29
1.3.5 Inferentialism 31
1.3.6 Concluding Remarks 32
1.4 Subformula Property 33
1.5 Admissibility of the Structural Rules 35
1.5.1 Operational vs Global Meaning 37
1.6 Admissibility of the Logical Rules 39
1.7 Explicitness, Separation and Symmetry 39
1.8 Uniqueness 40
1.9 Syntactic Purity 40
1.10 Došen's Principle Redefined 42
1.10.1 Modularity 45
Notes 45
Part II Sequent Calculi for Modal Logic 47
2 Modal Logic and Ordinary Sequent Calculi 48
2.1 Normal Modal Logic 48
2.2 Ordinary Sequent Calculi for Modal Logic 54
2.3 The Idea of Generalising the Gentzen Calculus 60
Notes 62
3 Purely Syntactic Methods 63
3.1 Multiple Sequent Calculi 64
3.2 Higher-Arity Sequent Calculi 70
3.3 Display Sequent Calculi 74
Notes 62
4 Semantic Methods 83
4.1 Semantic Modal Sequent Calculi 84
4.2 Indexed Sequent Calculi 92
4.3 Internalised Forcing (Relation) Sequent Calculi 100
Notes 108
5 Comparing the Different Generalisations of the Sequent Calculus 109
5.1 From Multiple Sequent Calculi to Display Sequent Calculi 109
5.2 From Higher-Arity Sequent Calculi to Display Sequent Calculi 112
5.3 From Indexed Sequent Calculi to Internalised Forcing Sequent Calculi 115
5.4 From Indexed Sequent Calculi to Semantic Modal Sequent Calculi and Vice Versa 120
5.5 From Display Sequent Calculi to Internalised Forcing Sequent Calculi 121
Notes 124
Part III Tree-Hypersequent Calculi 125
6 On the Tree-Hypersequent Calculi 126
6.1 The Calculi Thsk* 129
6.2 Logical Variant of the Tree-Hypersequent Calculi 133
6.3 Adequacy of the Tree-Hypersequent Calculi 145
Notes 148
7 Syntactic Cut-Admissibility and Decidability 149
7.1 Cut-Admissibility in the Tree-Hypersequent Calculi 149
7.2 Decidability of the Tree-Hypersequent Calculi 162
Notes 169
8 Semantic Adequacy 170
8.1 Semantic Validity of the Tree-Hypersequent Calculi 170
8.2 Semantic Completeness of the Tree-Hypersequent Calculi 175
9 A Hypersequent Calculus for the System S5 180
9.1 The Calculus ThS5L 181
9.2 Admissibility of the Structural Rules in ThS5L 182
9.3 Adequacy of ThS5L 185
9.4 Cut-Admissibility in ThS5L 186
9.5 Decidability of ThS5L 188
Notes 191
10 A Tree-Hypersequent Calculus for the Modal Logic of Provability 192
10.1 The Calculus ThsglL 192
10.2 Admissibility of the Structural Rules in ThsglL 193
10.3 Adequacy of ThsglL 198
10.4 Cut-Admissibility in ThsglL 201
11 Further Results on Tree-Hypersequent Calculi 207
11.1 Tree-Hypersequent Calculi and Other Calculi 207
11.2 Tree-Hypersequent Calculi and Other Logics 210
11.3 Tree-Hypersequent Calculi and Further Developments 211
Note 211
References 212
Symbols and Notations 218
Index 221

Erscheint lt. Verlag 19.11.2010
Reihe/Serie Trends in Logic
Trends in Logic
Zusatzinfo XII, 224 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Geisteswissenschaften Philosophie Allgemeines / Lexika
Geisteswissenschaften Philosophie Logik
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Logik / Mengenlehre
Technik
Schlagworte cut-elimination • Gentzen calculus • Modal Logic • tree-hypersequent
ISBN-10 90-481-9670-1 / 9048196701
ISBN-13 978-90-481-9670-8 / 9789048196708
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95