Applications of Sheaves
Springer Berlin (Verlag)
978-3-540-09564-4 (ISBN)
Fragments of the history of sheaf theory.- Finiteness and decidability:I.- Injective banach sheaves.- Simplicial sets and the foundations of analysis.- Localization with respect to a measure.- On the concept of a measurable space I.- Banach spaces in categories of sheaves.- The affine scheme of a general ring.- Localisation, spectra and sheaf representation.- Concrete quasitopoi.- Higher dimensional torsors and the cohomology of topoi : The abelian theory.- Sheaf models for analysis.- Sheaves and logic.- Heyting-valued models for intuitionistic set theory.- Sheaf theoretical concepts in analysis: Bundles and sheaves of Banach spaces, Banach C(X)-modules.- Continuity in spatial toposes.- A syntactic approach to Diers' localizable categories.- Conditions related to de Morgan's law.- Sheaves in physics - Twistor theory.- Sheaf representations and the dedekind reals.- Manifolds in formal differential geometry.- Note on non-abelian cohomology.- Representations of rings and modules.- Cramer's rule in the Zariski topos.- On the spectrum of a real representable ring.- On functorializing usual first-order model theory.- Topos theory and complex analysis.- Identity and existence in intuitionistic logic.- Weak adjointness in proof theory.- Rank one projective modules over certain fourier algebras.- Boolean valued analysis.- Sheaf-theoretical methods in the solution of Kaplansky's problem.- Generic Galois theory of local rings.- Sheaf theory and zero-dimensional mappings.
Erscheint lt. Verlag | 1.10.1979 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | XIV, 779 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1102 g |
Themenwelt | Geisteswissenschaften ► Philosophie ► Logik |
Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika | |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Analysis | |
Schlagworte | Algebra • Applications • Calculus • Finite • Garbe (Math.) • Geometry • Identity • manifold • Proof |
ISBN-10 | 3-540-09564-0 / 3540095640 |
ISBN-13 | 978-3-540-09564-4 / 9783540095644 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich