Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Lectures on the Nearest Neighbor Method - Gérard Biau, Luc Devroye

Lectures on the Nearest Neighbor Method

Buch | Softcover
IX, 290 Seiten
2019 | 1. Softcover reprint of the original 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-79782-3 (ISBN)
CHF 209,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.

Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).

Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k -nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k -nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP -consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.

"This book deals with different aspects regarding this approach, starting with the standard k-nearest neighbor model, and passing through the weighted k-nearest neighbor model, estimations for entropy, regression functions etc. ... It is intended for a large audience, including students, teachers, and researchers." (Florin Gorunescu, zbMATH 1330.68001, 2016)

Erscheinungsdatum
Reihe/Serie Springer Series in the Data Sciences
Zusatzinfo IX, 290 p. 4 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 462 g
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Density Estimation • Nearest Neighbor Method • order statistics • regression estimation • Stone's theorem
ISBN-10 3-319-79782-4 / 3319797824
ISBN-13 978-3-319-79782-3 / 9783319797823
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 39,20