Um unsere Webseiten für Sie optimal zu gestalten und fortlaufend zu verbessern, verwenden wir Cookies. Durch Bestätigen des Buttons »Akzeptieren« stimmen Sie der Verwendung zu. Über den Button »Einstellungen« können Sie auswählen, welche Cookies Sie zulassen wollen.

AkzeptierenEinstellungen
Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Lectures on the Nearest Neighbor Method

Buch | Hardcover
IX, 290 Seiten
2015 | 1st ed. 2015
Springer International Publishing (Verlag)
978-3-319-25386-2 (ISBN)
CHF 209,70 inkl. MwSt

This text presents a wide-ranging and rigorous overview of nearest neighbor methods, one of the most important paradigms in machine learning. Now in one self-contained volume, this book systematically covers key statistical, probabilistic, combinatorial and geometric ideas for understanding, analyzing and developing nearest neighbor methods.

Gérard Biau is a professor at Université Pierre et Marie Curie (Paris). Luc Devroye is a professor at the School of Computer Science at McGill University (Montreal).

Part I: Density Estimation.- Order Statistics and Nearest Neighbors.- The Expected Nearest Neighbor Distance.- The k -nearest Neighbor Density Estimate.- Uniform Consistency.- Weighted k -nearest neighbor density estimates.- Local Behavior.- Entropy Estimation.- Part II: Regression Estimation.- The Nearest Neighbor Regression Function Estimate.- The 1-nearest Neighbor Regression Function Estimate.- LP -consistency and Stone's Theorem.- Pointwise Consistency.- Uniform Consistency.- Advanced Properties of Uniform Order Statistics.- Rates of Convergence.- Regression: The Noisless Case.- The Choice of a Nearest Neighbor Estimate.- Part III: Supervised Classification.- Basics of Classification.- The 1-nearest Neighbor Classification Rule.- The Nearest Neighbor Classification Rule. Appendix.- Index.

"This book deals with different aspects regarding this approach, starting with the standard k-nearest neighbor model, and passing through the weighted k-nearest neighbor model, estimations for entropy, regression functions etc. ... It is intended for a large audience, including students, teachers, and researchers." (Florin Gorunescu, zbMATH 1330.68001, 2016)

Erscheinungsdatum
Reihe/Serie Springer Series in the Data Sciences
Zusatzinfo IX, 290 p. 4 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 604 g
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Density Estimation • mathematics and statistics • Nearest Neighbor Method • order statistics • pattern recognition • Probability theory and stochastic processes • regression estimation • Statistics and Computing/Statistics Programs • Stone's theorem
ISBN-10 3-319-25386-7 / 3319253867
ISBN-13 978-3-319-25386-2 / 9783319253862
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Stochastik: von Abweichungen bis Zufall

von René L. Schilling

Buch | Softcover (2025)
De Gruyter (Verlag)
CHF 48,90

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 39,20