Nicht aus der Schweiz? Besuchen Sie lehmanns.de
k-Schur Functions and Affine Schubert Calculus - Thomas Lam, Luc Lapointe, Jennifer Morse, Anne Schilling, Mark Shimozono

k-Schur Functions and Affine Schubert Calculus

Buch | Softcover
219 Seiten
2016 | Softcover reprint of the original 1st ed. 2014
Springer-Verlag New York Inc.
978-1-4939-4972-4 (ISBN)
CHF 164,75 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry.

This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers,who want to become familiar with this fascinating new field.

1. Introduction.- 2. Primer on k-Schur Functions.- 3. Stanley symmetric functions and Peterson algebras.- 4. Affine Schubert calculus.

Erscheinungsdatum
Reihe/Serie Fields Institute Monographs ; 33
Zusatzinfo 126 Illustrations, black and white; VIII, 219 p. 126 illus.
Verlagsort New York
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Mathematik / Informatik Mathematik Graphentheorie
Schlagworte affine Schubert calculus • enumerative geometry • Macdonald polynomial positivity • Representation Theory • Schubert bases • Stanley symmetric functions
ISBN-10 1-4939-4972-1 / 1493949721
ISBN-13 978-1-4939-4972-4 / 9781493949724
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Hans Marthaler; Benno Jakob; Katharina Schudel

Buch | Softcover (2024)
hep verlag
CHF 58,00
Nielsen Methods, Covering Spaces, and Hyperbolic Groups

von Benjamin Fine; Anja Moldenhauer; Gerhard Rosenberger …

Buch | Softcover (2024)
De Gruyter (Verlag)
CHF 153,90