Nicht aus der Schweiz? Besuchen Sie lehmanns.de

A Dressing Method in Mathematical Physics (eBook)

eBook Download: PDF
2007 | 2007
XXIV, 383 Seiten
Springer Netherland (Verlag)
978-1-4020-6140-0 (ISBN)

Lese- und Medienproben

A Dressing Method in Mathematical Physics - Evgeny V. Doktorov, Sergey B. Leble
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This monograph systematically develops and considers the so-called 'dressing method' for solving differential equations (both linear and nonlinear), a means to generate new non-trivial solutions for a given equation from the (perhaps trivial) solution of the same or related equation. Throughout, the text exploits the 'linear experience' of presentation, with special attention given to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions.


This monograph systematically develops and considers the so-called "e;dressing method"e; for solving differential equations (both linear and nonlinear), a means to generate new non-trivial solutions for a given equation from the (perhaps trivial) solution of the same or related equation. Throughout, the text exploits the "e;linear experience"e; of presentation, with special attention given to the algebraic aspects of the main mathematical constructions and to practical rules of obtaining new solutions.

INTRODUCTION 1 Mathematical preliminaries 1.1 Intertwine relations. Ladder operators 1.2 Factorization of matrices. 1.3 Factorization of l -matrix. 2 Factorization and dressing 2.1 Left and right division of ordinary differential operators. Bell polynomials. 2.2 Generalized Bell polynomials. 2.3 Division and factorization of differential operators. Generalized Riccati equations. 2.4 Darboux transformation. Generalized Burgers equations. 2.5 Darboux transformations in associative ring with automorphism. Quasideterminants. 2.6 Joint covariance of equations and nonlinear problems. 2.7 Example. Nonabelian Hirota system. 2.8 Second example. Nahm equation. 2.9 On symmetry and supersymmetry. 3 Darboux transformations 3.1 Gauge transformations and general definition of DT. 3.2 Basic notations: algebraic objects. 3.3 Zakharov - Shabat equations for two projectors. Elementary DT. 3.4 Elementary and binary Darboux Transformations for ZS equations with three projectors. 3.5 General case. Elementary and binary Darboux transformations. 3.6 The limit case - analog of Schlesinger transformation. 3.7 N-wave equations. 3.8 Higher combinations. Hirota-Satsuma (integrable CKdV) and KdV-MKdV equations. 3.9 Infinitesimal transforms for iterated DTs. 3.10 Geometric aspect. 4 Applications in linear problems 4.1 Integrable potentials in quantum mechanics. 4.2 Darboux transformations in continuous spectrum. Scattering problem. 4.3 Radial Schrödinger equation. 4.4 Darboux transformations and potentials in multidimensions. 4.5 Zero-range potentials, dressing and electron-molecule scattering. 4.5 Linear Darbouxauto-transformation. 4.6 One-dimensional Dirac equation. 4.7 Non-stationary problems. 4.8 Dressing in classical mechanics. One-dimensional problems. 4.9 Poisson form of dynamics equations. Darboux theorem for classical evolution. 5 Dressing chain equations 5.1 Scalar case. The Boussinesq equation. 5.2 Chain equations for noncommutative field formulation. 5.3 The example of Zakharov-Shabat problem. 5.4 General operator. Stationary equations as eigenvalue problems and chains. 5.5 Finite closures of the chain equations. Finite-gap solutions. 6 The dressing in 2+1 6.1 Laplace transformations. 6.2 Combined Darboux-Laplace transforms. 6.3 Moutard transformation. 6.4 Goursat transformation. 6.5 The addition of the lower level to spectra of matrix and scalar components of d=2 SUSY Hamiltonian. 7 Important links 7.1 Bilinear formalism. The Hirota method. 7.2 Bäcklund transformations. 7.3 Singular manifold method. 7.4 General ideas for integral equations. 7.5 The Zakharov-Shabat theory. 7.6 Reduction conditions. 8 Dressing via the local Riemann-Hilbert problem 8.1 The RH problem and generation of new solutions. 8.2 The nonlinear Shchrödinger equation. 8.3 The modified NLS equation. 8.4 The Ablowitz-Ladik equation. 8.5 Three wave resonant interaction equations. 8.6 Homoclinic orbits by the dressing method. 9 Dressing via the non-local RH problem 9.1 The Benjamin-Ono equation. 9.2 The Kadomtsev-Petviashvili I equation. 9.3 The Davey-Stewartson I equation. 9.4 The modified Kadomtsev-Petviashvili I equation. 10 Generating new solutions via the d-bar problem 10.1 Elements of the

Erscheint lt. Verlag 19.5.2007
Reihe/Serie Mathematical Physics Studies
Mathematical Physics Studies
Zusatzinfo XXIV, 383 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Astronomie / Astrophysik
Naturwissenschaften Physik / Astronomie Optik
Technik
Schlagworte Algebra • Darboux transformation • Dressing Methods • Inverse Scattering Transform • Mathematical Physics • non-associative algebras • Operator • Potential • Riemann-Hilbert problem • Schrödinger equation • Soliton • Transformation • wave equation
ISBN-10 1-4020-6140-4 / 1402061404
ISBN-13 978-1-4020-6140-0 / 9781402061400
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich