Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Monge-Ampère Equation - Cristian E. Gutiérrez

The Monge-Ampère Equation

Buch | Softcover
XIV, 216 Seiten
2018 | 2. Softcover reprint of the original 2nd ed. 2016
Springer International Publishing (Verlag)
978-3-319-82806-0 (ISBN)
CHF 249,95 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

Now in its second edition, this monograph explores the Monge-Ampère equation and the latest advances in its study and applications.  It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli.  The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions.  An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts.  Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions.  New to this edition is a chapter on the linearized Monge-Ampère equation and a chapter on interior Hölder estimates for second derivatives.  Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampère-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics.  Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.

Cristian Gutierrez is a Professor in the Department of Mathematics at Temple University in Philadelphia, PA, USA. He teaches courses in Partial Differential Equations and Analysis.

Generalized Solutions to Monge-Ampère Equations.- Uniformly Elliptic Equations in Nondivergence Form.- The Cross-sections of Monge-Ampère.- Convex Solutions of detDu=1 in Rn.- Regularity Theory for the Monge-Ampère Equation.- W^2,p Estimates for the Monge-Ampère Equation.- The Linearized Monge-Ampère Equation.- Interior Hölder Estimates for Second Derivatives.- References.- Index.

"Very clear monograph that will be useful in stimulating new researches on the Monge-Ampère equation, its connections with several research areas and its applications." (Vincenzo Vespri, zbMATH 1356.35004, 2017)

Erscheinungsdatum
Reihe/Serie Progress in Nonlinear Differential Equations and Their Applications
Zusatzinfo XIV, 216 p. 6 illus., 3 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 361 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Schlagworte convex function • cross-sections • Differential Geometry • Harnack inequality • Hölder estimates • Monge-Ampère equation • Partial differential equations
ISBN-10 3-319-82806-1 / 3319828061
ISBN-13 978-3-319-82806-0 / 9783319828060
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 109,95