The Mathematical Theory of Time-Harmonic Maxwell's Equations
Springer International Publishing (Verlag)
978-3-319-37918-0 (ISBN)
Andreas Kirsch and Frank Hettlich are Professors of Mathematics at Karlsruher Institut für Technologie (KIT).
Introduction.- Expansion into Wave Functions.- Scattering From a Perfect Conductor.- The Variational Approach to the Cavity Problem.- Boundary Integral Equation Methods for Lipschitz Domains.- Appendix.- References.- Index.
"This book is devoted to the study of the Maxwell equations in relationship with the basic techniques for a thorough mathematical analysis of these equations. ... Numerous examples and exercises illustrate the abstract content of this book. The volume under review is useful to graduate students and researchers in applied mathematics and engineers working in the theoretical approach to electromagnetic wave propagation." (Teodora-Liliana Radulescu, zbMATH 1342.35004, 2016)
Erscheinungsdatum | 29.08.2016 |
---|---|
Reihe/Serie | Applied Mathematical Sciences |
Zusatzinfo | XIII, 337 p. 3 illus., 1 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | Appl.Mathematics/Computational Methods of Engineer • Differential calculus and equations • Electromagnetic theory • Functional Analysis • Functional analysis and transforms • Helmholtz equations • Lipschitz domains • mathematics and statistics • Maths for engineers • Maxwell equation • Numerical analysis • Partial differential equations • Sobolev spaces |
ISBN-10 | 3-319-37918-6 / 3319379186 |
ISBN-13 | 978-3-319-37918-0 / 9783319379180 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich