Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Metaheuristics for Finding Multiple Solutions (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
XII, 315 Seiten
Springer International Publishing (Verlag)
978-3-030-79553-5 (ISBN)

Lese- und Medienproben

Metaheuristics for Finding Multiple Solutions -
Systemvoraussetzungen
160,49 inkl. MwSt
(CHF 156,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents the latest trends and developments in multimodal optimization and niching techniques. Most existing optimization methods are designed for locating a single global solution. However, in real-world settings, many problems are 'multimodal' by nature, i.e., multiple satisfactory solutions exist. It may be desirable to locate several such solutions before deciding which one to use. Multimodal optimization has been the subject of intense study in the field of population-based meta-heuristic algorithms, e.g., evolutionary algorithms (EAs), for the past few decades. These multimodal optimization techniques are commonly referred to as 'niching' methods, because of the nature-inspired 'niching' effect that is induced to the solution population targeting at multiple optima. Many niching methods have been developed in the EA community. Some classic examples include crowding, fitness sharing, clearing, derating, restricted tournament selection, speciation, etc. Nevertheless, applying these niching methods to real-world multimodal problems often encounters significant challenges.

To facilitate the advance of niching methods in facing these challenges, this edited book highlights the latest developments in niching methods. The included chapters touch on algorithmic improvements and developments, representation, and visualization issues, as well as new research directions, such as preference incorporation in decision making and new application areas. This edited book is a first of this kind specifically on the topic of niching techniques.

This book will serve as a valuable reference book both for researchers and practitioners. Although chapters are written in a mutually independent way, Chapter 1 will help novice readers get an overview of the field. It describes the development of the field and its current state and provides a comparative analysis of the IEEE CEC and ACM GECCO niching competitions of recent years, followed by a collection of open research questions and possible research directions that may be tackled in the future.



Mike Preuss is Assistant Professor at LIACS, the computer science institute of Universiteit Leiden in the Netherlands. Previously, he was with the information systems institute of WWU Muenster, Germany (headquarter of ERCIS), and before with the Chair of Algorithm Engineering at TU Dortmund, Germany, where he received his PhD in 2013. His research interests focus on the field of evolutionary algorithms for real-valued problems, namely on multimodal and multiobjective optimization, and on computational intelligence methods for computer games, and their successful application to real-world problems as chemical retrosynthesis.

Xiaodong Li received his B.Sc. degree from Xidian University, Xi'an, China, and Ph.D. degree in information science from the University of Otago, Dunedin, New Zealand, respectively. Currently, he is a full professor in the School of Science (Computer Science and Software Engineering) of RMIT University, Melbourne, Australia.  His research interests include evolutionary computation, machine learning, data analytics, multiobjective optimization, dynamic optimization, multimodal optimization, large-scale optimization, and swarm intelligence. He serves as an Associate Editor of the IEEE Transactions on Evolutionary Computation, Swarm Intelligence (Springer), and the International Journal of Swarm Intelligence Research. He is a founding member of the IEEE CIS Task Force on Swarm Intelligence, and a former Chair of the IEEE CIS Task Force on Large-Scale Global Optimization. He is currently a Vice-chair of the IEEE CIS Task Force on Multi-Modal Optimization. He is the recipient of the 2013 SIGEVO Impact Award and the 2017 IEEE CIS 'IEEE Transactions on Evolutionary Computation Outstanding Paper Award'.

Michael G. Epitropakis received his B.S., M.Sc., and Ph.D. degrees from the Department of Mathematics, University of Patras, Patras, Greece. Currently, he is a director of technical products in The Signal Group, Athens, Greece. Previously, he was an Assistant Professor in Data Science at Lancaster University, Lancaster, UK. His current research interests include operations research, computational intelligence, evolutionary computation, swarm intelligence, multi-modal optimization, machine learning, and search-based software engineering. He is a founding member of the IEEE CIS Task Force on Multi-Modal Optimization acting as Chair/Co-Chair from its foundation.

Jonathan E. Fieldsend is Professor of Computational Intelligence at the University of Exeter. He has a BA degree in Economics from Durham University, a Masters in Computational Intelligence from the University of Plymouth and a PhD in Computer Science from the University of Exeter. He has over 100 peer-reviewed publications in the evolutionary computation and machine learning domains, and on the interface between the two. He is a vice-chair of the IEEE Computational Intelligence Society (CIS) Task Forces on Multi-Modal Optimization, and on Data-Driven Evolutionary Optimization of Expensive Problems. He also sits on the IEEE CIS Task Force on Evolutionary Many-Objective Optimization. He is a member of the IEEE Computational Intelligence Society and the ACM SIGEVO.

Erscheint lt. Verlag 22.10.2021
Reihe/Serie Natural Computing Series
Natural Computing Series
Zusatzinfo XII, 315 p. 115 illus., 75 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik
Technik Bauwesen
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte evolutionary computation • Global Optimization • machine learning • Metaheuristics • Multimodal Optimization (MMO) • Multi-Objective Optimization • Niching • Optimization • Quality diversity
ISBN-10 3-030-79553-5 / 3030795535
ISBN-13 978-3-030-79553-5 / 9783030795535
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Lehr- und Managementbuch

von Dietmar Vahs

eBook Download (2023)
Schäffer-Poeschel Verlag
CHF 43,95
Ein Lehr- und Managementbuch

von Dietmar Vahs

eBook Download (2023)
Schäffer-Poeschel Verlag
CHF 43,95