Genetic Programming Theory and Practice XIII
Springer International Publishing (Verlag)
978-3-319-34221-4 (ISBN)
Evolving Simple Symbolic Regression Models by Multi-objective Genetic Programming.- Learning Heuristics for Mining RNA Sequence-Structure Motifs.- Kaizen Programming for Feature Construction for Classification.- GP as if You Meant It: An Exercise for Mindful Practice.- nPool: Massively Distributed Simultaneous Evolution and Cross-Validation in EC-Star.- Highly Accurate Symbolic Regression with Noisy Training Data.- Using Genetic Programming for Data Science: Lessons Learned.- The Evolution of Everything (EvE) and Genetic Programming.- Lexicase selection for program synthesis: a Diversity Analysis.- Using Graph Databases to Explore the Dynamics of Genetic Programming Runs.- Predicting Product Choice with Symbolic Regression and Classification.- Multiclass Classification Through Multidimensional Clustering.- Prime-Time: Symbolic Regression takes its place in the Real World.
Erscheinungsdatum | 17.09.2016 |
---|---|
Reihe/Serie | Genetic and Evolutionary Computation |
Zusatzinfo | XX, 262 p. 69 illus., 31 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Wirtschaft ► Betriebswirtschaft / Management | |
Schlagworte | Algorithm analysis and problem complexity • artificial intelligence (incl. robotics) • Big Data • Cloud Computing • Computational Intelligence • Computer Science • Data Science • evolutionary algorithms • Feature Generation • genetic programming • geometric programming • Hyper heuristics • Lexicase selection • machine learning • Multi-Objective Optimization • Operations Research, Management Science • semantic programming • Singularity • Symbolic Regression |
ISBN-10 | 3-319-34221-5 / 3319342215 |
ISBN-13 | 978-3-319-34221-4 / 9783319342214 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich