Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Data Mining in Finance - Boris Kovalerchuk, Evgenii Vityaev

Data Mining in Finance

Advances in Relational and Hybrid Methods
Buch | Softcover
308 Seiten
2013
Springer-Verlag New York Inc.
978-1-4757-7332-3 (ISBN)
CHF 299,55 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Data Mining in Finance presents a comprehensive overview of major algorithmic approaches to predictive data mining, including statistical, neural networks, ruled-based, decision-tree, and fuzzy-logic methods, and then examines the suitability of these approaches to financial data mining. The book focuses specifically on relational data mining (RDM), which is a learning method able to learn more expressive rules than other symbolic approaches. RDM is thus better suited for financial mining, because it is able to make greater use of underlying domain knowledge. Relational data mining also has a better ability to explain the discovered rules - an ability critical for avoiding spurious patterns which inevitably arise when the number of variables examined is very large. The earlier algorithms for relational data mining, also known as inductive logic programming (ILP), suffer from a relative computational inefficiency and have rather limited tools for processing numerical data.
Data Mining in Finance introduces a new approach, combining relational data mining with the analysis of statistical significance of discovered rules. This reduces the search space and speeds up the algorithms. The book also presents interactive and fuzzy-logic tools for `mining' the knowledge from the experts, further reducing the search space.
Data Mining in Finance contains a number of practical examples of forecasting S&P 500, exchange rates, stock directions, and rating stocks for portfolio, allowing interested readers to start building their own models. This book is an excellent reference for researchers and professionals in the fields of artificial intelligence, machine learning, data mining, knowledge discovery, and applied mathematics.

The scope and methods of the study.- Numerical Data Mining Models and Financial Applications.- Rule-Based and Hybrid Financial Data Mining.- Relational Data Mining (RDM).- Financial Applications of Relational Data Mining.- Comparison of Performance of RDM and other methods in financial applications.- Fuzzy logic approach and its financial applications.

Reihe/Serie The Springer International Series in Engineering and Computer Science ; 547
Zusatzinfo XVI, 308 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Wirtschaft Betriebswirtschaft / Management Finanzierung
ISBN-10 1-4757-7332-3 / 1475773323
ISBN-13 978-1-4757-7332-3 / 9781475773323
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15