Inference for Functional Data with Applications (eBook)
XIV, 422 Seiten
Springer New York (Verlag)
978-1-4614-3655-3 (ISBN)
This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory.
The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.
Lajos Horváth is Professor of Mathematics at the University of Utah. He has served on the editorial boards of Statistics & Probability Letters, Journal of Statistical Planning and Inference and Journal of Time Series Econometrics. He has coauthored more than 250 research papers and 3 books, including Weighted Approximations in Probability and Statistics and Limit Theorems in Change-Point Analysis (both with Miklós Csörgö).
Piotr Kokoszka is Professor of Statistics at Colorado State University. He has served on the editorial boards of the journals Statistical Modelling and Computational Statistics. He has coauthored over 100 papers in areas of statistics and its applications focusing on dependent data.
This book presents recently developed statistical methods and theory required for the application of the tools of functional data analysis to problems arising in geosciences, finance, economics and biology. It is concerned with inference based on second order statistics, especially those related to the functional principal component analysis. While it covers inference for independent and identically distributed functional data, its distinguishing feature is an in depth coverage of dependent functional data structures, including functional time series and spatially indexed functions. Specific inferential problems studied include two sample inference, change point analysis, tests for dependence in data and model residuals and functional prediction. All procedures are described algorithmically, illustrated on simulated and real data sets, and supported by a complete asymptotic theory. The book can be read at two levels. Readers interested primarily in methodology will find detailed descriptions of the methods and examples of their application. Researchers interested also in mathematical foundations will find carefully developed theory. The organization of the chapters makes it easy for the reader to choose an appropriate focus. The book introduces the requisite, and frequently used, Hilbert space formalism in a systematic manner. This will be useful to graduate or advanced undergraduate students seeking a self-contained introduction to the subject. Advanced researchers will find novel asymptotic arguments.
Lajos Horváth is Professor of Mathematics at the University of Utah. He has served on the editorial boards of Statistics & Probability Letters, Journal of Statistical Planning and Inference and Journal of Time Series Econometrics. He has coauthored more than 250 research papers and 3 books, including Weighted Approximations in Probability and Statistics and Limit Theorems in Change-Point Analysis (both with Miklós Csörgö). Piotr Kokoszka is Professor of Statistics at Colorado State University. He has served on the editorial boards of the journals Statistical Modelling and Computational Statistics. He has coauthored over 100 papers in areas of statistics and its applications focusing on dependent data.
Independent functional observations.- The functional linear model.- Dependent functional data.- References.- Index.
Erscheint lt. Verlag | 8.5.2012 |
---|---|
Reihe/Serie | Springer Series in Statistics | Springer Series in Statistics |
Zusatzinfo | XIV, 422 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Wirtschaft | |
Schlagworte | Asymptotic Theory • Distributed functions • functional data analysis • Functional time series • Hilbert space theory • Regression model |
ISBN-10 | 1-4614-3655-9 / 1461436559 |
ISBN-13 | 978-1-4614-3655-3 / 9781461436553 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich