Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Data Mining and Knowledge Discovery via Logic-Based Methods

Theory, Algorithms, and Applications
Buch | Hardcover
350 Seiten
2010
Springer-Verlag New York Inc.
978-1-4419-1629-7 (ISBN)

Lese- und Medienproben

Data Mining and Knowledge Discovery via Logic-Based Methods - Evangelos Triantaphyllou
CHF 224,65 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.

Algorithmic Issues.- Inferring a Boolean Function from Positive and Negative Examples.- A Revised Branch-and-Bound Approach for Inferring a Boolean Function from Examples.- Some Fast Heuristics for Inferring a Boolean Function from Examples.- An Approach to Guided Learning of Boolean Functions.- An Incremental Learning Algorithm for Inferring Boolean Functions.- A Duality Relationship Between Boolean Functions in CNF and DNF Derivable from the Same Training Examples.- The Rejectability Graph of Two Sets of Examples.- Application Issues.- The Reliability Issue in Data Mining: The Case of Computer-Aided Breast Cancer Diagnosis.- Data Mining and Knowledge Discovery by Means of Monotone Boolean Functions.- Some Application Issues of Monotone Boolean Functions.- Mining of Association Rules.- Data Mining of Text Documents.- First Case Study: Predicting Muscle Fatigue from EMG Signals.- Second Case Study: Inference of Diagnostic Rules for Breast Cancer.- A Fuzzy Logic Approach to Attribute Formalization: Analysis of Lobulation for Breast Cancer Diagnosis.- Conclusions.

Reihe/Serie Springer Optimization and Its Applications ; 43
Zusatzinfo 9 Illustrations, color; 82 Illustrations, black and white; XXXIV, 350 p. 91 illus., 9 illus. in color.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management
ISBN-10 1-4419-1629-6 / 1441916296
ISBN-13 978-1-4419-1629-7 / 9781441916297
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
CHF 62,85