Integrated Devices for Artificial Intelligence and VLSI (eBook)
384 Seiten
Wiley (Verlag)
978-1-394-20514-1 (ISBN)
With its in-depth exploration of the close connection between microelectronics, AI, and VLSI technology, this book offers valuable insights into the cutting-edge techniques and tools used in VLSI design automation, making it an essential resource for anyone seeking to stay ahead in the rapidly evolving field of VLSI design.
Very large-scale integration (VLSI) is the inter-disciplinary science of utilizing advanced semiconductor technology to create various functions of computer system. This book addresses the close link of microelectronics and artificial intelligence (AI). By combining VLSI technology, a very powerful computer architecture confinement is possible. To overcome problems at different design stages, researchers introduced artificial intelligent (AI) techniques in VLSI design automation. AI techniques, such as knowledge-based and expert systems, first try to define the problem and then choose the best solution from the domain of possible solutions.
These days, several CAD technologies, such as Synopsys and Mentor Graphics, are specifically created to increase the automation of VLSI design. When a task is completed using the appropriate tool, each stage of the task design produces outcomes that are more productive than typical. However, combining all of these tools into a single package offer has drawbacks. We can't really use every outlook without sacrificing the efficiency and usefulness of our output. The researchers decided to include AI approaches into VLSI design automation in order to get around these obstacles. AI is one of the fastest growing tools in the world of technology and innovation that helps to make computers more reliable and easy to use. Artificial Intelligence in VLSI design has provided high-end and more feasible solutions to the difficulties faced by the VLSI industry. Physical design, RTL design, STA, etc. are some of the most in-demand courses to enter the VLSI industry. These courses help develop a better understanding of the many tools like Synopsis. With each new dawn, artificial intelligence in VLSI design is continually evolving, and new opportunities are being investigated.
Balwinder Raj, PhD, is an associate professor in the Electronics and Communication Engineering Department, at the National Institute of Technical Teachers Training and Research, Chandigarh. He has published more than 100 research papers in national and international journals and conferences. Additionally, the European Commission awarded him a Mobility of Life research fellowship for postdoc research work at the University of Rome, Tor Vergata, Italy in 2010-2011. His areas of interest include nanoscale semiconductor device modeling, sensors design, FinFET-based memory design, and low-power VLSI design.
Suman Lata Tripathi, PhD, is a professor at the Lovely Professional University with more than 20 years of experience in academics. She is also a remote post-doctoral researcher at Nottingham Trent University, London, UK. She has published more than 74 research papers in refereed science journals and conferences, as well as 13 Indian patents and two copyrights. Additionally, she has edited and authored more than 17 books in different areas of electronics and electrical engineering.
Tarun Chaudhary, PhD, is an assistant professor in the Electronics and Communication Engineering Department at the Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, India. During her PhD, she worked on the design and mathematical modeling of the vertical field effect transistor. She has five book chapters and more than 25 research papers in peer-reviewed national and international journals and conferences.
K. Srinivasa Rao, PhD, is a professor and the head of the Microelectronics Research Group in the Department of Electronics and Communication Engineering at the Koneru Lakshmaiah Education Foundation, Andhra Pradesh, India. His areas of research include MEMS-based reconfigurable antennas, MEMS actuators, piezoresistive, and VLSI circuts. He is a reviewer for many SCI-indexed journals and an external reviewer for many universities.
Mandeep Singh is a professor at the Indian Institute of Information Technology, Surat Gujarat. He has five years of teaching experience with undergraduate and master students. He has published various research papers in the domain of VLSI design and circuits.
With its in-depth exploration of the close connection between microelectronics, AI, and VLSI technology, this book offers valuable insights into the cutting-edge techniques and tools used in VLSI design automation, making it an essential resource for anyone seeking to stay ahead in the rapidly evolving field of VLSI design. Very large-scale integration (VLSI) is the inter-disciplinary science of utilizing advanced semiconductor technology to create various functions of computer system. This book addresses the close link of microelectronics and artificial intelligence (AI). By combining VLSI technology, a very powerful computer architecture confinement is possible. To overcome problems at different design stages, researchers introduced artificial intelligent (AI) techniques in VLSI design automation. AI techniques, such as knowledge-based and expert systems, first try to define the problem and then choose the best solution from the domain of possible solutions. These days, several CAD technologies, such as Synopsys and Mentor Graphics, are specifically created to increase the automation of VLSI design. When a task is completed using the appropriate tool, each stage of the task design produces outcomes that are more productive than typical. However, combining all of these tools into a single package offer has drawbacks. We can t really use every outlook without sacrificing the efficiency and usefulness of our output. The researchers decided to include AI approaches into VLSI design automation in order to get around these obstacles. AI is one of the fastest growing tools in the world of technology and innovation that helps to make computers more reliable and easy to use. Artificial Intelligence in VLSI design has provided high-end and more feasible solutions to the difficulties faced by the VLSI industry. Physical design, RTL design, STA, etc. are some of the most in-demand courses to enter the VLSI industry. These courses help develop a better understanding of the many tools like Synopsis. With each new dawn, artificial intelligence in VLSI design is continually evolving, and new opportunities are being investigated.
Erscheint lt. Verlag | 15.8.2024 |
---|---|
Sprache | englisch |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
ISBN-10 | 1-394-20514-7 / 1394205147 |
ISBN-13 | 978-1-394-20514-1 / 9781394205141 |
Haben Sie eine Frage zum Produkt? |
Größe: 66,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich