Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Unsupervised Pattern Discovery in Automotive Time Series

Pattern-based Construction of Representative Driving Cycles
Buch | Softcover
XXI, 148 Seiten
2022 | 1st ed. 2022
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-36335-2 (ISBN)

Lese- und Medienproben

Unsupervised Pattern Discovery in Automotive Time Series - Fabian Kai Dietrich Noering
CHF 134,80 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

In the last decade unsupervised pattern discovery in time series, i.e. the problem of finding recurrent similar subsequences in long multivariate time series without the need of querying subsequences, has earned more and more attention in research and industry. Pattern discovery was already successfully applied to various areas like seismology, medicine, robotics or music. Until now an application to automotive time series has not been investigated. This dissertation fills this desideratum by studying the special characteristics of vehicle sensor logs and proposing an appropriate approach for pattern discovery. To prove the benefit of pattern discovery methods in automotive applications, the algorithm is applied to construct representative driving cycles.

 

lt;b>Fabian Noering is currently working in the technical development of Volkswagen AG as data scientist with a special interest in the analysis of time series regarding e.g. product optimization.

Introduction.- RelatedWork.- Development of Pattern Discovery Algorithms for Automotive Time Series.- Pattern-based Representative Cycles.- Evaluation.- Conclusion.

Erscheinungsdatum
Reihe/Serie AutoUni – Schriftenreihe
Zusatzinfo XXI, 148 p. 56 illus., 19 illus. in color.
Verlagsort Wiesbaden
Sprache englisch
Maße 148 x 210 mm
Gewicht 232 g
Themenwelt Technik Fahrzeugbau / Schiffbau
Technik Maschinenbau
Schlagworte Automotive • motif discovery • Pattern Discovery • representative cycles • Time Series • unsupervised
ISBN-10 3-658-36335-5 / 3658363355
ISBN-13 978-3-658-36335-2 / 9783658363352
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich