Introduction to the Geometry of Foliations, Part B
Vieweg & Teubner (Verlag)
978-3-528-18568-8 (ISBN)
Prof. Dr. Ulrich Hirsch ist geschäftsführender Gesellschafter der Ulrich Hirsch & Partner Unternehmensberater in Bonn.
IV — Basic Constructions and Examples.- 1. General setting in co dimension one.- 2. Topological dynamics.- 3. foliated bundles ; example.- 4. Gluing foliations together.- 5. Turbulization.- 6. Co dimension-one foliations on spkeres.- V — Structure of Codimension-one Foliations.- 1. Trans verse orientability.- 2. Holonomy of compact leaver.- 3. Saturated open sets of compact manifolds.- 4. Centre of a compact foliated manifold; global stability.- Charter VI — Exceptional Minimal Sets of Compact Foliated Manifolds; a Theorem of Sacksteder.- 1. Resilient leaves.- 2. The. theorem of Denjoy-Sacksteder.- 3. Sacksteder’s theorem.- 4. The theorem of Schwartz.- Charter VII — One Sided Holonomy; Vanishing Cycles and Closed Transversals.- 1. Preliminaries on one-sided holonomy and vanishing cycles.- 2. Transverse follatlons of D2 × IR.- 3. Existence of one-sided holonomy and vanishing cycles.- VIII — Foliations Without Holonomy.- 1. Closed 1-forms without singularities.- 2. Foliations without holonomy versus equivariant fibrations.- 3. Holonomy representation and cohomology direction.- IX — Growth.- 1. Growth of groups, homogeneous spaces and riemannian manifolds.- 2. Growth of leaves in foliations on compact manifolds.- X — Holonomy Invariant Measures.- 1. Invariant measures for subgroups of Horneo (IR) or Homeo (S1 ).- 2. Foliations witk holonomy invariant measure.- Literature..- Glossary of notations.
Erscheint lt. Verlag | 1.1.1987 |
---|---|
Reihe/Serie | Aspects of Mathematics |
Zusatzinfo | X, 298 p. |
Verlagsort | Wiesbaden |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 424 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Geometrie / Topologie |
Technik | |
Schlagworte | Boundary element method • Construction • Dynamics • foliation • Form • Geometrie • Geometry • Information • Invariant • manifold • Mathematica • Minimum • Review • Sets • stability • Theorem |
ISBN-10 | 3-528-18568-6 / 3528185686 |
ISBN-13 | 978-3-528-18568-8 / 9783528185688 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich