Statics and Mechanics of Materials with MasteringEngineering, SI Edition
Pearson Education Limited
978-1-292-14205-0 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
This package includes MasteringEngineering, an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. The text and MasteringEngineering work together to guide students through engineering concepts with a multi-step approach to problems. MasteringEngineering should only be purchased when required by an instructor. Please be sure you have the correct ISBN and Course ID. Instructors, contact your Pearson representative for more information.
1 General Principles
Chapter Objectives
1.1 Mechanics
1.2 Fundamental Concepts
1.3 The International System of Units
1.4 Numerical Calculations
1.5 General Procedure for Analysis
2 Force Vectors
Chapter Objectives
2.1 Scalars and Vectors
2.2 Vector Operations
2.3 Vector Addition of Forces
2.4 Addition of a System of Coplanar Forces
2.5 Cartesian Vectors
2.6 Addition of Cartesian Vectors
2.7 Position Vectors
2.8 Force Vector Directed Along a Line
2.9 Dot Product
3 Force System Resultants
Chapter Objectives
3.1 Moment of a Force—Scalar Formulation
3.2 Cross Product
3.3 Moment of a Force—Vector Formulation
3.4 Principle of Moments
3.5 Moment of a Force about a Specified Axis
3.6 Moment of a Couple
3.7 Simplification of a Force and Couple System
3.8 Further Simplification of a Force and Couple System
3.9 Reduction of a Simple Distributed Loading
4 Equilibrium of a Rigid Body
Chapter Objectives
4.1 Conditions for Rigid-Body Equilibrium
4.2 Free-Body Diagrams
4.3 Equations of Equilibrium
4.4 Two- and Three-Force Members
4.5 Free-Body Diagrams
4.6 Equations of Equilibrium
4.7 Characteristics of Dry Friction
4.8 Problems Involving Dry Friction
5 Structural Analysis
Chapter Objectives
5.1 Simple Trusses
5.2 The Method of Joints
5.3 Zero-Force Members
5.4 The Method of Sections
5.5 Frames and Machines
6 Center of Gravity, Centroid, and Moment of Inertia
Chapter Objectives
6.1 Center of Gravity and the Centroid of a Body
6.2 Composite Bodies
6.3 Moments of Inertia for Areas
6.4 Parallel-Axis Theorem for an Area
6.5 Moments of Inertia for Composite Areas
7 Stress and Strain
Chapter Objectives
7.1 Introduction
7.2 Internal Resultant Loadings
7.3 Stress
7.4 Average Normal Stress in an Axially Loaded Bar
7.5 Average Shear Stress
7.6 Allowable Stress Design
7.7 Deformation
7.8 Strain
8 Mechanical Properties of Materials
Chapter Objectives
8.1 The Tension and Compression Test
8.2 The Stress–Strain Diagram
8.3 Stress–Strain Behavior of Ductile and Brittle Materials
8.4 Strain Energy
8.5 Poisson’s Ratio
8.6 The Shear Stress–Strain Diagram
9 Axial Load
Chapter Objectives
9.1 Saint-Venant’s Principle
9.2 Elastic Deformation of an Axially Loaded Member
9.3 Principle of Superposition
9.4 Statically Indeterminate Axially Loaded Members
9.5 The Force Method of Analysis for Axially Loaded Members
9.6 Thermal Stress
10 Torsion
Chapter Objectives
10.1 Torsional Deformation of a Circular Shaft
10.2 The Torsion Formula
10.3 Power Transmission
10.4 Angle of Twist
10.5 Statically Indeterminate Torque-Loaded Members
11 Bending
Chapter Objectives
11.1 Shear and Moment Diagrams
11.2 Graphical Method for Constructing Shear and Moment Diagrams
11.3 Bending Deformation of a Straight Member
11.4 The Flexure Formula
11.5 Unsymmetric Bending
12 Transverse Shear
Chapter Objectives
12.1 Shear in Straight Members
12.2 The Shear Formula
12.3 Shear Flow in Built-Up Members
13 Combined Loadings
Chapter Objectives
13.1 Thin-Walled Pressure Vessels
13.2 State of Stress Caused by Combined Loadings
14 Stress and Strain Transformation
Chapter Objectives
14.1 Plane-Stress Transformation
14.2 General Equations of Plane-Stress Transformation
14.3
Erscheint lt. Verlag | 3.2.2017 |
---|---|
Verlagsort | Harlow |
Sprache | englisch |
Maße | 199 x 259 mm |
Gewicht | 1692 g |
Themenwelt | Technik ► Maschinenbau |
ISBN-10 | 1-292-14205-7 / 1292142057 |
ISBN-13 | 978-1-292-14205-0 / 9781292142050 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich