Covering Walks in Graphs (eBook)
XIV, 110 Seiten
Springer New York (Verlag)
978-1-4939-0305-4 (ISBN)
Covering Walks in Graphs is aimed at researchers and graduate students in the graph theory community and provides a comprehensive treatment on measures of two well studied graphical properties, namely Hamiltonicity and traversability in graphs. This text looks into the famous K nigsberg Bridge Problem, the Chinese Postman Problem, the Icosian Game and the Traveling Salesman Problem as well as well-known mathematicians who were involved in these problems. The concepts of different spanning walks with examples and present classical results on Hamiltonian numbers and upper Hamiltonian numbers of graphs are described; in some cases, the authors provide proofs of these results to illustrate the beauty and complexity of this area of research. Two new concepts of traceable numbers of graphs and traceable numbers of vertices of a graph which were inspired by and closely related to Hamiltonian numbers are introduced. Results are illustrated on these two concepts and the relationship between traceable concepts and Hamiltonian concepts are examined. Describes several variations of traceable numbers, which provide new frame works for several well-known Hamiltonian concepts and produce interesting new results.
1. Eulerian Walks.- 2. Hamiltonian Walks.- 3. Traceable Walks.- References.- Index.
Erscheint lt. Verlag | 25.1.2014 |
---|---|
Reihe/Serie | SpringerBriefs in Mathematics | SpringerBriefs in Mathematics |
Zusatzinfo | XIV, 110 p. 37 illus., 11 illus. in color. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
Technik | |
Schlagworte | combinatorics • Hamiltonian graph • spanning walk • traceable number • traversability in graphs |
ISBN-10 | 1-4939-0305-5 / 1493903055 |
ISBN-13 | 978-1-4939-0305-4 / 9781493903054 |
Haben Sie eine Frage zum Produkt? |
Größe: 2,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich