Prof. E. Nappi studied physics at the University of Bari where he completed his higher education in 1981. In 1983 he became a staff researcher at the INFN (Italian Institute for Research in Nuclear Physics) and since 2002 is Director of Research. Since the beginning of his career, he has had a keen interest in the experimental aspects of CERN's physics program of ultra-relativistic collisions of heavy ions and has been active in the NA35, WA97 and NA57 experiments at the SPS and subsequently, in the conception and development of the ALICE experiment at the LHC. During the sixteen years spent in ALICE, he occupied the highest managerial positions; he is member of the Management Board of ALICE since 1998, the year in which he was the recipient of a two-year scientific associateship at CERN to serve the experiment as deputy-spokesperson. He is the author and co-author of almost 140 papers published in international journals as well as member of the International Scientific Advisory and Organizing Committees in several conferences and workshops on nuclear physics instrumentation. Prof. Vladimir Peskov is a chief scientist at the Institute for Chemical Physics Russian Academy of Sciences (RAS). Having obtained his academic degrees (Ph.D in 1976 and Doctor of Sciences in 1982) from the Institute of Physical Problems RAS in Moscow, he worked in the Physics Laboratory RAS led by P.L. Kapitza where he discovered and studied a new type of plasma instability. In 1986 he obtained an Associate Scientist position at CERN in G. Charpak's group and later spent most of his career working at various Scientific Institutions (CERN, Fermi National Laboratory, NASA and the Royal Institute of Technology, Sweden) on the instrumentation for high energy physics, astrophysics and medicine. He is an author and co-author of more than one hundred publications and twelve International Patents, member of the International Scientific Advisory and Organizing Committees in several conferences and workshops on instrumentation for high energy physics.
I. Introduction
I.1. Why is it necessary to detect photons and charged particles?
(from the structure of the matter and universe to practical applications)
I.2. Principle of radiation interaction with gases
I.3. History of developments and traditional position-sensitive gaseous detectors:
a) Spark chambers
b) Multi-wire proportional chambers. Why multi-wire proportional chambers revolutionized the detector developments?
c) Parallel-plate chambers
d) Resistive plate chambers (RPCs)
e) Time-projection chambers
f) Gas scintillation detectors and light emission chambers
II. Operational Physics of Gaseous Detectors
1. Townsend avalanches
2. Proportional mode of operation
3. Physics of photon and ion feedbacks
4. Geiger mode of operation
5. Streamers and breakdowns
6. Maximum achievable gas gains and the Raether limit
7. Operation at very high counting rates and the cathode excitement effect
8. Optimization of gas mixtures for the needs of particular measurements or requirements.
III. Recent Developments
III.1.Photosensitive gaseous detectors
1. Multi-wire chambers filled with photosensitive gases
2. Multi-wire and parallel-plate chambers combined with solid photocathodes
III.2. Micropattern gaseous detectors-a new revolution in the detector developments
1. Microstrip gas chambers
2. Microdot gas chambers
3. Microgap parallel-plate chambers and MICROMEGAS
4. Capillary plates, GEMs, GEMs with resistive electrodes
5. LEAK detector and other new designs of micropattern gaseous detectors
6. Operational physics of micropattern gaseous detectors
a) What determines the maximum achievable gain in the micropattern gaseous detectors?
b) Raether limit in the case of the micropattern detectors
c) Cathode excitement effect
7. New possibilities in measurements offered by micropattern gaseous detectors
a) Very high position resolution detectors
b) Micropattern photo-detectors
IV. Applications of Position-Sensitive Gaseous Detectors
1. High energy physics (latest applications of position gaseous detectors in high energy physics experiments for tracking, muon detection and Cherenkov light detection)
2. Astrophysics and search of dark matter (flight and ground experiments)
3. Plasma diagnostics
4. Medicine and biology (full body x-ray scanners, heart diagnostics, mammographic scanners, portal imaging devices for advanced radiotherapy, biological imaging devices, PETs (RPC and high pressure capillary tubes)
5. Industrial and homeland security (crystallographic industrial imaging devices, airport x-ray scanners, muon tomography, UV visualization; recent developments: Rn and Po monitors, detectors of flames and dangerous gases)
V. Conclusions
The role of gaseous detectors in the greatest scientific discoveries, important applications, their possible future and their place with respect to other position-sensitive detectors (solid state, vacuum, liquid?).
Erscheint lt. Verlag | 20.3.2013 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik |
Technik | |
Schlagworte | Astronomie u. Astrophysik • Astronomy & Astrophysics • Astrophysik • Bildgebendes Verfahren • Bildgebende Systeme u. Verfahren • Bildgebende Verfahren i. d. Biomedizin • biomedical engineering • Biomedical Imaging • Biomedizintechnik • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Hochenergiephysik • Imaging Systems & Technology • Kern- u. Hochenergiephysik • Nuclear & High Energy Physics • Physics • Physik • radiation measurements, gaseous detectors medical diagnostics, high energy physics, astrophysics, nuclear physics, position-sensitive gaseous detectors, micropattern gaseous detectors, charged particles detection |
ISBN-10 | 3-527-64031-2 / 3527640312 |
ISBN-13 | 978-3-527-64031-7 / 9783527640317 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,3 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich