Statistics for Earth and Environmental Scientists (eBook)
420 Seiten
John Wiley & Sons (Verlag)
978-0-470-65089-9 (ISBN)
real-world environmental problems
A host of complex problems face today's earth science community,
such as evaluating the supply of remaining non-renewable energy
resources, assessing the impact of people on the environment,
understanding climate change, and managing the use of water. Proper
collection and analysis of data using statistical techniques
contributes significantly toward the solution of these problems.
Statistics for Earth and Environmental Scientists presents
important statistical concepts through data analytic tools and
shows readers how to apply them to real-world problems.
The authors present several different statistical approaches to
the environmental sciences, including Bayesian and nonparametric
methodologies. The book begins with an introduction to types of
data, evaluation of data, modeling and estimation, random
variation, and sampling--all of which are explored through
case studies that use real data from earth science applications.
Subsequent chapters focus on principles of modeling and the key
methods and techniques for analyzing scientific data,
including:
* Interval estimation and Methods for analyzinghypothesis testing
of means time series data
* Spatial statistics
* Multivariate analysis
* Discrete distributions
* Experimental design
Most statistical models are introduced by concept and
application, given as equations, and then accompanied by heuristic
justification rather than a formal proof. Data analysis, model
building, and statistical inference are stressed throughout, and
readers are encouraged to collect their own data to incorporate
into the exercises at the end of each chapter. Most data sets,
graphs, and analyses are computed using R, but can be worked with
using any statistical computing software. A related website
features additional data sets, answers to selected exercises, and R
code for the book's examples.
Statistics for Earth and Environmental Scientists is an
excellent book for courses on quantitative methods in geology,
geography, natural resources, and environmental sciences at the
upper-undergraduate and graduate levels. It is also a valuable
reference for earth scientists, geologists, hydrologists, and
environmental statisticians who collect and analyze data in their
everyday work.
John H. Schuenemeyer, PhD, is President of Southwest Statistical Consulting, LLC and Professor Emeritus of Statistics, Geography, and Geology at the University of Delaware. A Fellow of the American Statistical Association, Dr. Schuenemeyer has more than thirty years of academic and consulting experience and was the recipient of the 2004 John Cedric Griffiths Teaching Award, awarded by the International Association for Mathematical Geosciences. Lawrence J. Drew, PhD, is Research Scientist at the U.S. Geological Survey. Dr. Drew has published more than 200 scientific papers on the role of quantitative methods in petroleum and mineral resource assessment, and he is currently is working on an analysis of environmental data. Dr. Drew is the winner of the 2005 Krumbein Medal, awarded by the International Association for Mathematical Geosciences.
Chapter 1. Role of statistics and data analysis.
1.1 Introduction.
1.2 Case studies.
1.3 Data.
1.4 Samples versus the population, some notation.
1.5 Vector and matrix notation.
1.6 Frequency distributions and histograms
1.7 The distribution as a model.
1.8 Sample moments.
1.9 Normal (Gaussian) distribution.
1.10 Exploratory data analysis.
1.11 Estimation.
1.12 Bias.
1.13 Causes of variance.
1.14 About data.
1.15 Reasons to conduct statistically based studies.
1.16 Data mining.
1.17 Modeling.
1.18 Transformations.
1.19 Statistical concepts.
1.20 Statistics paradigms.
1.21 Summary.
1.22 Exercises.
Chapter 2. Modeling concepts.
2.1 Introduction.
2.2 Why construct a model?
2.3 What does a statistical model do?
2.4 Steps in modeling.
2.5 Is a model a unique solution to a problem?
2.6 Model assumptions.
2.7 Designed experiments.
2.8 Replication.
2.9 Summary.
2.10 Exercises.
Chapter 3. Estimation and hypothesis testing on means andother statistics.
3.1 Introduction.
3.2 Independence of observations.
3.3 The Central Limit Theorem.
3.4 Sampling distributions.
3.4.1 t-distribution.
3.5 Confidence interval estimate on a mean.
3.6 Confidence interval on the difference between means.
3.7 Hypothesis testing on means.
3.8 Bayesian hypothesis testing.
3.9 Nonparametric hypothesis testing.
3.10 Bootstrap hypothesis testing on means.
3.11 Testing multiple means via analysis of variance.
3.12 Multiple comparisons of means.
3.13 Nonparametric ANOVA.
3.14 Paired data.
3.15 Kolmogorov-Smirnov goodness-of-fit test.
3.16 Comments on hypothesis testing.
3.17 Summary.
3.18 Exercises.
Chapter 4. Regression.
4.1 Introduction.
4.2 Pittsburgh coal quality case study.
4.3 Correlation and covariance.
4.4 Simple linear regression.
4.5 Multiple regression.
4.6 Other regression procedures.
4.7 Nonlinear models.
4.8 Summary.
4.9 Exercises.
Chapter 5. Time series.
5.1 Introduction.
5.2 Time Domain.
5.3 Frequency Domain.
5.4 Wavelets.
5.5 Summary.
5.6 Exercises.
Chapter 6. Spatial statistics.
6.1 Introduction.
6.2 Data.
6.3 Three-dimensional data visualization.
6.4 Spatial association.
6.5 The effect of trend.
6.6 Semivariogram models.
6.7 Kriging.
6.8 Space-time models.
6.9 Summary.
6.10 Exercises.
Chapter 7. Multivariate analysis.
7.1 Introduction.
7.2 Multivariate graphics.
7.3 Principal component analysis.
7.4 Factor analysis.
7.5 Cluster analysis.
7.6 Multidimensional scaling.
7.7 Discriminant analysis.
7.8 Tree based modeling.
7.9 Summary.
7.10 Exercises.
Chapter 8. Discrete data analysis and pointprocesses.
8.1 Introduction.
8.2 Discrete process and distributions.
8.3 Point processes.
8.4 Lattice data and models.
8.5 Proportions.
8.6 Contingency tables.
8.7 Generalized linear models.
8.8 Summary.
8.9 Exercises.
Chapter 9 Design of experiments.
9.1 Introduction.
9.2 Sampling designs.
9.3 Design of experiments.
9.4 Comments on field studies and design.
9.5 Missing data.
9.6 Summary.
9.7 Exercises.
Chapter 10 Directional data.
10.1 Introduction.
10.2 Circular data.
10.3 Spherical data.
10.4 Summary.
10.5 Exercises.
"Statistics for Earth and Environmental Scientists is an
excellent book for courses on quantitative methods in geology,
geography, natural resources, and environmental sciences at the
upper-undergraduate and graduate levels. It is also a valuable
reference for earth scientists, geologists, hydrologists, and
environmental statisticians
who collect and analyze data in their everyday work."
(Zentralblatt MATH, 1 January 2013)
"Summing Up: Recommended. Upper-division undergraduates and
graduate students." (Choice, 1 September 2011)
"Proper collection and analsis of data using statistical
techniques contributes significantly toward the solution of these
problems. Statistics for Earth and Environmental Scientists
presents important statistical concepts through data analytic tools
and shows readers how to apply them to real-world problems."
(Breitbart.com: Business Wire, 2 March 2011)
Erscheint lt. Verlag | 12.4.2011 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Technik | |
Schlagworte | Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applied Probability & Statistics • biometrics • Biometrie • Environmental Science • Environmental Studies • Geowissenschaften • Statistics • Statistik • Umweltforschung • Umweltwissenschaften |
ISBN-10 | 0-470-65089-3 / 0470650893 |
ISBN-13 | 978-0-470-65089-9 / 9780470650899 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 4,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich