Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Advanced Markov Chain Monte Carlo Methods (eBook)

Learning from Past Samples
eBook Download: PDF
2010 | 1. Auflage
384 Seiten
Wiley (Verlag)
978-0-470-66973-0 (ISBN)

Lese- und Medienproben

Advanced Markov Chain Monte Carlo Methods -  Raymond Carroll,  Faming Liang,  Chuanhai Liu
Systemvoraussetzungen
96,99 inkl. MwSt
(CHF 94,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.

Faming Liang, Associate Professor, Department of Statistics, Texas A&M University. Chuanhai Liu, Professor, Department of Statistics, Purdue University. Raymond J. Carroll, Distinguished Professor, Department of Statistics, Texas A&M University.

Preface

Acknowledgements

List of Figures

List of Tables

1 Bayesian Inference and Markov chain Monte Carlo

1.1 Bayes

1.2 Bayes output

1.3 Monte Carlo Integration

1.4 Random variable generation

1.5 Markov chain Monte Carlo

Exercises

2 The Gibbs sampler

2.1 The Gibbs sampler

2.2 Data Augmentation

2.3 Implementation strategies and acceleration methods

2.4 Applications

Exercises

3 The Metropolis-Hastings Algorithm

3.1 The Metropolis-Hastings Algorithm

3.2 Some Variants of the Metropolis-Hastings Algorithm

3.3 Reversible Jump MCMC Algorithm for Bayesian Model Selection

Problems

3.4 Metropolis-within-Gibbs Sampler for ChIP-chip Data Analysis

Exercises

4 Auxiliary Variable MCMC Methods

4.1 Simulated Annealing

4.2 Simulated Tempering

4.3 Slice Sampler

4.4 The Swendsen-Wang Algorithm

4.5 The Wolff Algorithm

4.6 The Møller algorithm

4.7 The Exchange Algorithm

4.8 Double MH Sampler

4.9 Monte Carlo MH Sampler

4.10 Applications

Exercises

5 Population-Based MCMC Methods

5.1 Adaptive Direction Sampling

5.2 Conjugate Gradient Monte Carlo

5.3 Sample Metropolis-Hastings Algorithm

5.4 Parallel Tempering

5.5 Evolutionary Monte Carlo

5.6 Sequential Parallel Tempering for Simulation of High Dimensional

Systems

5.7 Equi-Energy Sampler

5.8 Applications

Forecasting

Exercises

6 Dynamic Weighting

6.1 Dynamic Weighting

6.2 Dynamically Weighted Importance Sampling

6.3 Monte Carlo Dynamically Weighted Importance Sampling

6.4 Sequentially Dynamically Weighted Importance Sampling

Exercises

7 Stochastic Approximation Monte Carlo

7.1 Multicanonical Monte Carlo

7.2 1/k-Ensemble Sampling

7.3 Wang-Landau Algorithm

7.4 Stochastic Approximation Monte Carlo

7.5 Applications of Stochastic Approximation Monte Carlo

7.6 Variants of Stochastic Approximation Monte Carlo

7.7 Theory of Stochastic Approximation Monte Carlo

7.8 Trajectory Averaging: Toward the Optimal Convergence Rate

Exercises

8 Markov Chain Monte Carlo with Adaptive Proposals

8.1 Stochastic Approximation-based Adaptive Algorithms

8.2 Adaptive Independent Metropolis-Hastings Algorithms

8.3 Regeneration-based Adaptive Algorithms

8.4 Population-based Adaptive Algorithms

Exercises

References

Index

"The book is suitable as a textbook for one-semester courses on Monte Carlo methods, offered at the advance postgraduate levels." (Mathematical Reviews, 1 December 2012)

"Researchers working in the field of applied statistics will profit from this easy-to-access presentation. Further illustration is done by discussing interesting examples and relevant applications. The valuable reference list includes technical reports which are hard to and by searching in public data bases." (Zentralblatt MATH, 2011)

"This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial." (Breitbart.com: Business Wire , 1 February 2011)

"The Markov Chain Monte Carlo method has now become the dominant methodology for solving many classes of computational problems in science and technology." (SciTech Book News, December 2010)

Erscheint lt. Verlag 24.6.2010
Reihe/Serie Wiley Series in Computational Statistics
Wiley Series in Computational Statistics
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Bayesian analysis • Bayes-Verfahren • biometrics • Biometrie • Computational & Graphical Statistics • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • Statistics • Statistik • Wahrscheinlichkeitsrechnung
ISBN-10 0-470-66973-X / 047066973X
ISBN-13 978-0-470-66973-0 / 9780470669730
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 3,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich