Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Methods of Distances in the Theory of Probability and Statistics (eBook)

eBook Download: PDF
2013 | 2013
XVI, 619 Seiten
Springer New York (Verlag)
978-1-4614-4869-3 (ISBN)

Lese- und Medienproben

Methods of Distances in the Theory of Probability and Statistics -  Frank Fabozzi,  Lev Klebanov,  Svetlozar T. Rachev,  Stoyan V. Stoyanov
Systemvoraussetzungen
171,19 inkl. MwSt
(CHF 167,25)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to  the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics.

After describing the basic structure  of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases.

      Svetlozar T.  Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook  and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute-Asia (Singapore).  Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)



Svetlozar T. Rachev is a Professorin Department of Applied Mathematics and Statistics, SUNY-Stony Brook. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, MFF, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor of Finance, EDHEC Business School, Head of Research, EDHEC-Risk Institute. Frank J. Fabozzi is a Professor of Finance, EDHEC Business School


This book covers the method of metric distances and its application in probability theory and other fields. The method is fundamental in the study of limit theorems and generally in assessing the quality of approximations to a given probabilistic model. The method of metric distances is developed to study stability problems and reduces to the selection of an ideal or the most appropriate metric for the problem under consideration and a comparison of probability metrics. After describing the basic structure of probability metrics and providing an analysis of the topologies in the space of probability measures generated by different types of probability metrics, the authors study stability problems by providing a characterization of the ideal metrics for a given problem and investigating the main relationships between different types of probability metrics. The presentation is provided in a general form, although specific cases are considered as they arise in the process of finding supplementary bounds or in applications to important special cases. Svetlozar T. Rachev is the Frey Family Foundation Chair of Quantitative Finance, Department of Applied Mathematics and Statistics, SUNY-Stony Brook and Chief Scientist of Finanlytica, USA. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor at EDHEC Business School and Head of Research, EDHEC-Risk Institute-Asia (Singapore). Frank J. Fabozzi is a Professor at EDHEC Business School. (USA)

Svetlozar T. Rachev is a Professorin Department of Applied Mathematics and Statistics, SUNY-Stony Brook. Lev B. Klebanov is a Professor in the Department of Probability and Mathematical Statistics, MFF, Charles University, Prague, Czech Republic. Stoyan V. Stoyanov is a Professor of Finance, EDHEC Business School, Head of Research, EDHEC-Risk Institute. Frank J. Fabozzi is a Professor of Finance, EDHEC Business School

Main directions in the theory of probability metrics.- Probability distances and probability metrics: Definitions.- Primary, simple and compound probability distances, and minimal and maximal distances and norms.- A structural classification of probability distances.-Monge-Kantorovich mass transference problem, minimal distances and minimal norms.- Quantitative relationships between minimal distances and minimal norms.- K-Minimal metrics.- Relations between minimal and maximal distances.- Moment problems related to the theory of probability metrics: Relations between compound and primary distances.- Moment distances.- Uniformity in weak and vague convergence.- Glivenko-Cantelli theorem and Bernstein-Kantorovich invariance principle.- Stability of queueing systems.-Optimal quality usage.- Ideal metrics with respect to summation scheme for i.i.d. random variables.- Ideal metrics and rate of convergence in the CLT for random motions.- Applications of ideal metrics for sums of i.i.d. random variables to the problems of stability and approximation in risk theory.- How close are the individual and collective models in risk theory?- Ideal metric with respect to maxima scheme of i.i.d. random elements.- Ideal metrics and stability of characterizations of probability distributions.- Positive and negative de nite kernels and their properties.- Negative definite kernels and metrics: Recovering measures from potential.- Statistical estimates obtained by the minimal distances method.- Some statistical tests based on N-distances.- Distances defined by zonoids.- N-distance tests of uniformity on the hypersphere.-

Erscheint lt. Verlag 4.1.2013
Zusatzinfo XVI, 619 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Schlagworte Monge-Kantorovich mass transference problem • Probability distances • Statistical parameter estimation • Theory of Probability Distances
ISBN-10 1-4614-4869-7 / 1461448697
ISBN-13 978-1-4614-4869-3 / 9781461448693
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich