Statistical and Machine Learning Approaches for Network Analysis (eBook)
344 Seiten
John Wiley & Sons (Verlag)
978-1-118-34698-3 (ISBN)
through machine learning techniques
Statistical and Machine Learning Approaches for Network
Analysis provides an accessible framework for structurally
analyzing graphs by bringing together known and novel approaches on
graph classes and graph measures for classification. By providing
different approaches based on experimental data, the book uniquely
sets itself apart from the current literature by exploring the
application of machine learning techniques to various types of
complex networks.
Comprised of chapters written by internationally renowned
researchers in the field of interdisciplinary network theory, the
book presents current and classical methods to analyze networks
statistically. Methods from machine learning, data mining, and
information theory are strongly emphasized throughout. Real data
sets are used to showcase the discussed methods and topics, which
include:
* A survey of computational approaches to reconstruct and
partition biological networks
* An introduction to complex networks--measures, statistical
properties, and models
* Modeling for evolving biological networks
* The structure of an evolving random bipartite graph
* Density-based enumeration in structured data
* Hyponym extraction employing a weighted graph kernel
Statistical and Machine Learning Approaches for Network
Analysis is an excellent supplemental text for graduate-level,
cross-disciplinary courses in applied discrete mathematics,
bioinformatics, pattern recognition, and computer science. The book
is also a valuable reference for researchers and practitioners in
the fields of applied discrete mathematics, machine learning, data
mining, and biostatistics.
MATTHIAS DEHMER, PHD, is Head of the Institute for Bioinformatics and Trans- lational Research at the University for Health Sciences, Medical Informatics and Technology (Austria). He has written over 130 publications in his research areas, which include bioinformatics, systems biology, and applied discrete mathematics. Dr. Dehmer is also the coeditor of Applied Statistics for Network Biology, Statistical Modelling of Molecular Descriptors in QSAR/QSPR, Medical Biostatistics for Complex Diseases, Analysis of Complex Networks, and Analysis of Microarray Data, all published by Wiley. SUBHASH C. BASAK, PHD, is Senior Research Associate at the Natural Resources Research Institute. He has published extensively in the areas of biochemical pharmacology, toxicology, mathematical chemistry, and computational chemistry.
Preface ix
Contributors xi
1 A Survey of Computational Approaches to Reconstruct and Partition Biological Networks 1
Lipi Acharya, Thair Judeh, and Dongxiao Zhu
2 Introduction to Complex Networks: Measures, Statistical Properties, and Models 45
Kazuhiro Takemoto and Chikoo Oosawa
3 Modeling for Evolving Biological Networks 77
Kazuhiro Takemoto and Chikoo Oosawa
4 Modularity Configurations in Biological Networks with Embedded Dynamics 109
Enrico Capobianco, Antonella Travaglione, and Elisabetta Marras
5 Influence of Statistical Estimators on the Large-Scale Causal Inference of Regulatory Networks 131
Ricardo de Matos Simoes and Frank Emmert-Streib
6 Weighted Spectral Distribution: A Metric for Structural Analysis of Networks 153
Damien Fay, Hamed Haddadi, Andrew W. Moore, Richard Mortier, Andrew G. Thomason, and Steve Uhlig
7 The Structure of an Evolving Random Bipartite Graph 191
Reinhard Kutzelnigg
8 Graph Kernels 217
Matthias Rupp
9 Network-Based Information Synergy Analysis for Alzheimer Disease 245
Xuewei Wang, Hirosha Geekiyanage, and Christina Chan
10 Density-Based Set Enumeration in Structured Data 261
Elisabeth Georgii and Koji Tsuda
11 Hyponym Extraction Employing a Weighted Graph Kernel 303
Tim vor der Br¨uck
Index 327
Erscheint lt. Verlag | 26.6.2012 |
---|---|
Reihe/Serie | Wiley Series in Computational Statistics | Wiley Series in Computational Statistics |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Mathematik / Informatik ► Mathematik ► Graphentheorie | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik | |
Schlagworte | Computational & Graphical Statistics • Data Mining • Data Mining Statistics • Netzwerkanalyse • Rechnergestützte u. graphische Statistik • Rechnergestützte u. graphische Statistik • Statistics • Statistik |
ISBN-10 | 1-118-34698-X / 111834698X |
ISBN-13 | 978-1-118-34698-3 / 9781118346983 |
Haben Sie eine Frage zum Produkt? |
Größe: 4,7 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich