Foundations of Large-Scale Multimedia Information Management and Retrieval (eBook)
XVIII, 291 Seiten
Springer Berlin (Verlag)
978-3-642-20429-6 (ISBN)
'Foundations of Large-Scale Multimedia Information Management and Retrieval: Mathematics of Perception' covers knowledge representation and semantic analysis of multimedia data and scalability in signal extraction, data mining, and indexing. The book is divided into two parts: Part I - Knowledge Representation and Semantic Analysis focuses on the key components of mathematics of perception as it applies to data management and retrieval. These include feature selection/reduction, knowledge representation, semantic analysis, distance function formulation for measuring similarity, and multimodal fusion. Part II - Scalability Issues presents indexing and distributed methods for scaling up these components for high-dimensional data and Web-scale datasets. The book presents some real-world applications and remarks on future research and development directions.
The book is designed for researchers, graduate students, and practitioners in the fields of Computer Vision, Machine Learning, Large-scale Data Mining, Database, and Multimedia Information Retrieval.
Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Edward Y. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
Dr. Edward Y. Chang was a professor at the Department of Electrical & Computer Engineering, University of California at Santa Barbara, before he joined Google as a research director in 2006. Dr. Edward Y. Chang received his M.S. degree in Computer Science and Ph.D degree in Electrical Engineering, both from Stanford University.
Part I - Knowledge Representation and Semantic Analysis.- 1. Mathematics of Perception.- 2. Supervised Learning (based on tutorial DASFAA 2003).- 3. Query Concept Learning (based on IEEE TMM 2005).- 4. Feature Extraction.- 5. Feature Reduction (based on MM 04, ICME 05, IPAM).- 6. Similarity (based on MMJ 2002, CIKM 04, ICML 05).- Part II - Scalability Issues.- 7. Imbalanced Data Learning (based on TKDE 2005).- 8. Semantics Fusion (based on MM 04, MM05, KDD 08).- 9. Kernel Machines Speedup (based on SDM 05, KDD 06, NIPS 07).- 10. Kernel Indexing (based on TKDE 06).- 11. Put It All Together (based on SPIE 06).
Erscheint lt. Verlag | 27.8.2011 |
---|---|
Zusatzinfo | XVIII, 291 p. |
Verlagsort | Berlin |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Grafik / Design | |
Technik ► Maschinenbau | |
Schlagworte | High-Dimensional Indexing • Image Retrieval • Knowledge Representation • Large-scale Data Mining • Multimedia Information Retrieval • Scalability issues • Semantic Analysis • TUP |
ISBN-10 | 3-642-20429-5 / 3642204295 |
ISBN-13 | 978-3-642-20429-6 / 9783642204296 |
Haben Sie eine Frage zum Produkt? |
Größe: 11,5 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich