Advanced Lectures on Machine Learning
Machine Learning Summer School 2002, Canberra, Australia, February 11-22, 2002, Revised Lectures
Seiten
2003
|
2003
Springer Berlin (Verlag)
978-3-540-00529-2 (ISBN)
Springer Berlin (Verlag)
978-3-540-00529-2 (ISBN)
Machine Learning has become a key enabling technology for many engineering applications and theoretical problems alike. To further discussions and to dis- minate new results, a Summer School was held on February 11-22, 2002 at the Australian National University. The current book contains a collection of the main talks held during those two weeks in February, presented as tutorial chapters on topics such as Boosting, Data Mining, Kernel Methods, Logic, Reinforcement Learning, and Statistical Learning Theory. The papers provide an in-depth overview of these exciting new areas, contain a large set of references, and thereby provide the interested reader with further information to start or to pursue his own research in these directions. Complementary to the book, a recorded video of the presentations during the Summer School can be obtained at anu. edu. au/summer2002 It is our hope that graduate students, lecturers, and researchers alike will ?nd this book useful in learning and teaching Machine Learning, thereby continuing the mission of the Summer School. Canberra, November 2002 Shahar Mendelson Alexander Smola Research School of Information Sciences and Engineering, The Australian National University Thanks and Acknowledgments We gratefully thank all the individuals and organizations responsible for the success of the workshop.
A Few Notes on Statistical Learning Theory.- A Short Introduction to Learning with Kernels.- Bayesian Kernel Methods.- An Introduction to Boosting and Leveraging.- An Introduction to Reinforcement Learning Theory: Value Function Methods.- Learning Comprehensible Theories from Structured Data.- Algorithms for Association Rules.- Online Learning of Linear Classifiers.
Erscheint lt. Verlag | 31.1.2003 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | X, 266 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 410 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Sozialwissenschaften | |
Schlagworte | algorithm • Algorithm analysis and problem complexity • Algorithmic Learning Theory • algorithms • Boosting • Data Analysis • Data Mining • Discovery Science • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Kernel Method • Kernel Methods • Knowledge Discovery • learning • Learning Algorithms • Learning Logic • Learning theory • machine learning • Reinforcement Learning • statistical learning theory |
ISBN-10 | 3-540-00529-3 / 3540005293 |
ISBN-13 | 978-3-540-00529-2 / 9783540005292 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
Lehmanns Media (Verlag)
CHF 55,95
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media
Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …
Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15