Machine Learning with the Elastic Stack. (eBook)
450 Seiten
Packt Publishing (Verlag)
978-1-80107-846-7 (ISBN)
Elastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection.
The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with.
By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform.
Discover expert techniques for combining machine learning with the analytic capabilities of Elastic Stack and uncover actionable insights from your dataKey FeaturesIntegrate machine learning with distributed search and analyticsPreprocess and analyze large volumes of search data effortlesslyOperationalize machine learning in a scalable, production-worthy wayBook DescriptionElastic Stack, previously known as the ELK stack, is a log analysis solution that helps users ingest, process, and analyze search data effectively. With the addition of machine learning, a key commercial feature, the Elastic Stack makes this process even more efficient. This updated second edition of Machine Learning with the Elastic Stack provides a comprehensive overview of Elastic Stack's machine learning features for both time series data analysis as well as for classification, regression, and outlier detection. The book starts by explaining machine learning concepts in an intuitive way. You'll then perform time series analysis on different types of data, such as log files, network flows, application metrics, and financial data. As you progress through the chapters, you'll deploy machine learning within Elastic Stack for logging, security, and metrics. Finally, you'll discover how data frame analysis opens up a whole new set of use cases that machine learning can help you with. By the end of this Elastic Stack book, you'll have hands-on machine learning and Elastic Stack experience, along with the knowledge you need to incorporate machine learning in your distributed search and data analysis platform.What you will learnFind out how to enable the ML commercial feature in the Elastic StackUnderstand how Elastic machine learning is used to detect different types of anomalies and make predictionsApply effective anomaly detection to IT operations, security analytics, and other use casesUtilize the results of Elastic ML in custom views, dashboards, and proactive alertingTrain and deploy supervised machine learning models for real-time inferenceDiscover various tips and tricks to get the most out of Elastic machine learningWho this book is forIf you're a data professional looking to gain insights into Elasticsearch data without having to rely on a machine learning specialist or custom development, then this Elastic Stack machine learning book is for you. You'll also find this book useful if you want to integrate machine learning with your observability, security, and analytics applications. Working knowledge of the Elastic Stack is needed to get the most out of this book.
Erscheint lt. Verlag | 31.5.2021 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber ► Freizeit / Hobby ► Sammeln / Sammlerkataloge |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
ISBN-10 | 1-80107-846-7 / 1801078467 |
ISBN-13 | 978-1-80107-846-7 / 9781801078467 |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich