Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Statistical Analysis in Forensic Science (eBook)

Evidential Value of Multivariate Physicochemical Data
eBook Download: PDF
2013 | 1. Auflage
336 Seiten
John Wiley & Sons (Verlag)
978-1-118-76317-9 (ISBN)

Lese- und Medienproben

Statistical Analysis in Forensic Science - Grzegorz Zadora, Agnieszka Martyna, Daniel Ramos, Colin Aitken
Systemvoraussetzungen
78,99 inkl. MwSt
(CHF 77,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A practical guide for determining the evidential value of
physicochemical data

Microtraces of various materials (e.g. glass, paint, fibres, and
petroleum products) are routinely subjected to physicochemical
examination by forensic experts, whose role is to evaluate such
physicochemical data in the context of the prosecution and defence
propositions. Such examinations return various kinds of
information, including quantitative data. From the forensic point
of view, the most suitable way to evaluate evidence is the
likelihood ratio. This book provides a collection of recent
approaches to the determination of likelihood ratios and describes
suitable software, with documentation and examples of their use in
practice. The statistical computing and graphics software
environment R, pre-computed Bayesian networks using Hugin
Researcher and a new package, calcuLatoR, for the
computation of likelihood ratios are all explored.

Statistical Analysis in Forensic Science will provide an
invaluable practical guide for forensic experts and practitioners,
forensic statisticians, analytical chemists, and
chemometricians.

Key features include:

* Description of the physicochemical analysis of forensic trace
evidence.

* Detailed description of likelihood ratio models for determining
the evidential value of multivariate physicochemical
data.

* Detailed description of methods, such as empirical
cross-entropy plots, for assessing the performance of likelihood
ratio-based methods for evidence evaluation.

* Routines written using the open-source R software, as
well as Hugin Researcher and calcuLatoR.

* Practical examples and recommendations for the use of all these
methods in practice.

Grzegorz Zadora, Institute of Forensic Research, Krakow, Poland. Daniel Ramos, Telecommunication Engineering, Universidad Autonoma de Madrid, Spain.

Preface xiii

1 Physicochemical data obtained in forensic science
laboratories 1

1.1 Introduction 1

1.2 Glass 2

1.3 Flammable liquids: ATD-GC/MS technique 8

1.4 Car paints: Py-GC/MS technique 10

1.5 Fibres and inks: MSP-DAD technique 13

References 15

2 Evaluation of evidence in the form of physicochemical data
19

2.1 Introduction 19

2.2 Comparison problem 21

2.3 Classification problem 27

2.4 Likelihood ratio and Bayes' theorem 31

References 32

3 Continuous data 35

3.1 Introduction 35

3.2 Data transformations 37

3.3 Descriptive statistics 39

3.4 Hypothesis testing 59

3.5 Analysis of variance 78

3.6 Cluster analysis 85

3.7 Dimensionality reduction 92

References 105

4 Likelihood ratio models for comparison problems 107

4.1 Introduction 107

4.2 Normal between-object distribution 108

4.3 Between-object distribution modelled by kernel density
estimation 110

4.4 Examples 112

4.5 R Software 140

References 149

5 Likelihood ratio models for classification problems
151

5.1 Introduction 151

5.2 Normal between-object distribution 152

5.3 Between-object distribution modelled by kernel density
estimation 155

5.4 Examples 157

5.5 R software 172

References 179

6 Performance of likelihood ratio methods 181

6.1 Introduction 181

6.2 Empirical measurement of the performance of likelihood
ratios 182

6.3 Histograms and Tippett plots 183

6.4 Measuring discriminating power 186

6.5 Accuracy equals discriminating power plus calibration:
Empirical cross-entropy plots 192

6.6 Comparison of the performance of different methods for LR
computation 200

6.7 Conclusions: What to measure, and how 214

6.8 Software 215

References 216

Appendix A Probability 218

A.1 Laws of probability 218

A.2 Bayes' theorem and the likelihood ratio 222

A.3 Probability distributions for discrete data 225

A.4 Probability distributions for continuous data 227

References 227

Appendix B Matrices: An introduction to matrix algebra
228

B.1 Multiplication by a constant 228

B.2 Adding matrices 229

B.3 Multiplying matrices 230

B.4 Matrix transposition 232

B.5 Determinant of a matrix 232

B.6 Matrix inversion 233

B.7 Matrix equations 235

B.8 Eigenvectors and eigenvalues 237

Reference 239

Appendix C Pool adjacent violators algorithm 240

References 243

Appendix D Introduction to R software 244

D.1 Becoming familiar with R 244

D.2 Basic mathematical operations in R 246

D.3 Data input 252

D.4 Functions in R 254

D.5 Dereferencing 255

D.6 Basic statistical functions 257

D.7 Graphics with R 258

D.8 Saving data 266

D.9 R codes used in Chapters 4 and 5 266

D.10 Evaluating the performance of LR models 289

Reference 293

Appendix E Bayesian network models 294

E.1 Introduction to Bayesian networks 294

E.2 Introduction to Hugin ResearcherTM software 296

References 308

Appendix F Introduction to calcuLatoR software 309

F.1 Introduction 309

F.2 Manual 309

Reference 314

Index 315

Erscheint lt. Verlag 7.11.2013
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Recht / Steuern Strafrecht Kriminologie
Sozialwissenschaften
Technik
Schlagworte Analytische Chemie / Forensik • Angewandte Wahrscheinlichkeitsrechnung u. Statistik • Applied Probability & Statistics • Biowissenschaften • Chemie • Chemistry • Forensics • Forensic Science • Forensik • Forensische Wissenschaft • Life Sciences • Statistics • Statistik • Statistische Analyse
ISBN-10 1-118-76317-3 / 1118763173
ISBN-13 978-1-118-76317-9 / 9781118763179
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 15,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich