Hyperbolic Conservation Laws in Continuum Physics
Seiten
2010
|
2., nd ed. Softcover version of original hardcover edition 2005
Springer Berlin (Verlag)
978-3-642-06487-6 (ISBN)
Springer Berlin (Verlag)
978-3-642-06487-6 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
This is a lucid and authoritative exposition of the mathematical theory of hyperbolic system laws. The second edition contains a new chapter recounting exciting recent developments on the vanishing viscosity method. Numerous new sections introduce newly derived results.
From the reviews:
"The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject of conservations laws." --Zentralblatt MATH
From the reviews:
"The author is known as one of the leading experts in the field. His masterly written book is, surely, the most complete exposition in the subject of conservations laws." --Zentralblatt MATH
Balance Laws.- Introductioin to Continuum Physics.- Hyperbolic Systems of Balance Laws.- The Cauchy Problem.- Entropy and the Stability of Classical Solutions.- The L1 Theory for Scalar Conservation Laws.- Hyperbolic Systems of Balance Laws in One-Space Dimension.- Admissible Shocks.- Admissible Wave Fans and the Riemann Problem.- Generalized Characteristics.- Genuinely Nonlinear Scalar Conservation Law.- Genuinely Nonlinear Systems of Two Conservation Laws.- The Random Choice Method.- The Front Tracking Method and Standard Riemann Semigroups.- Construction of BV Volutions by the Vanishing Viscosity Method.- Compensated Compactness.- Bibliography.- Author Index.- Subject Index.
Reihe/Serie | Grundlehren der mathematischen Wissenschaften ; 325 |
---|---|
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 959 g |
Einbandart | Paperback |
Schlagworte | Entropy • hyperbolic conservation laws • Partial differential equations • thermodynamics |
ISBN-10 | 3-642-06487-6 / 3642064876 |
ISBN-13 | 978-3-642-06487-6 / 9783642064876 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |