Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Science of Synthesis Knowledge Updates 2010 Vol. 1 (eBook)

eBook Download: PDF | EPUB
2014 | 1. Auflage
580 Seiten
Thieme (Verlag)
978-3-13-178621-0 (ISBN)

Lese- und Medienproben

Science of Synthesis Knowledge Updates 2010 Vol. 1 -
Systemvoraussetzungen
Systemvoraussetzungen
2.589,99 inkl. MwSt
(CHF 2529,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
<P>The Science of Synthesis Editorial Board,together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.</P> <P>Content of this volume:<BR>Germanium cyanides, acylgermanes, a-halo- and a-alkoxyvinylgermanes, a-halo-, a-hydroxy-, a-alkoxy-, and a-aminoalkylgermanes, alkynylgermanes, aryl- and heteroarylgermanes, propargyl- and allenylgermanes, selenophenes,<BR>tellurophenes, isoxazoles, 1,2-benzisoxazoles and related compounds, benzoxazoles and other annulated oxazoles, isothiazoles, benzisothiazoles, benzothiazoles, isoselenazoles, annulated isoselenazole compounds, selenazoles, annulated selenazole compounds, isotellurazoles, and annulated isotellurazole and tellurazole compounds, pyridopyrazines and iodoarenes.</P>

Science of Synthesis: Knowledge Updates 2010/1 1
Title page 5
Imprint 7
Preface 8
Abstracts 10
Overview 24
Table of Contents 26
Volume 5: Compounds of Group 14 (Ge, Sn, Pb) 48
5.1 Product Class 1: Germanium Compounds 48
5.1.1.8 Germanium Hydrides 48
5.1.1.8.1 Method 1: Synthesis by Reduction of Germanium Halides 49
5.1.1.8.2 Method 2: Applications in Reduction of Organic Halides 49
5.1.1.8.3 Method 3: Applications in Hydrogermylation of C--C Multiple Bonds 50
5.1.1.8.4 Method 4: Applications with Acids and Bases 51
5.1.1.8.5 Method 5: Applications in Palladium(0)-Catalyzed Coupling Reactions 52
5.1.1.8.6 Method 6: Application as an Alternative to Tributyltin Hydride in Radical Chain Reactions 54
5.1.1.8.7 Method 7: Application as Precursors for Germyl Cation Generation 55
5.1.15.2 Germanium Cyanides 58
5.1.15.2.1 Method 1: Synthesis from Halogermanes by Substitution with Trialkylsilyl Cyanides 58
5.1.16.6 Acylgermanes 62
5.1.16.6.1 Method 1: Synthesis from Germyl Enol Ethers by Hydrolysis 62
5.1.16.6.2 Method 2: Synthesis from a,a-Diheterosubstituted Germanes by Hydrolysis 63
5.1.16.6.3 Method 3: Synthesis from Terminal Alkynes by Carbonylation 64
5.1.16.6.4 Method 4: Application of Acylgermanes as Radical Acceptors 65
5.1.16.6.5 Method 5: Application of Acylgermanes as Amide Precursors 66
5.1.18.4 a-Halo-and a-Alkoxyvinylgermanes 68
5.1.18.4.1 Method 1: Synthesis of a-Alkoxyvinylgermanes from a-Metallovinyl Ethers by Substitution 68
5.1.18.4.2 Method 2: Synthesis of a-Halovinylgermanes from Alk-1-ynylgermanes by Hydro/Carbometalation–Halogenation 69
5.1.18.4.3 Method 3: Synthesis of a-Halovinylgermanes from a-Halovinyl Sulfones by Radical-Mediated Desulfonylation 71
5.1.18.4.4 Method 4: Application of a-Halovinylgermanes in Palladium-Catalyzed Cross Coupling with Organic Halides 72
5.1.19.7 a-Halo-, a-Hydroxy,- a-Alkoxy-, and a-Aminoalkylgermanes 74
5.1.19.7.1 Method 1: Synthesis of a-Hetero- and a-Haloalkylgermanes from Halogermanes by Substitution 75
5.1.19.7.2 Method 2: Synthesis by Interconversion of a-Hetero- and a-Haloalkylgermanes by Substitution 76
5.1.19.7.3 Method 3: Synthesis of a-Hydroxyalkylgermanes from Hydroboration of Vinylgermanes 76
5.1.19.7.4 Method 4: Synthesis of a-Aminoalkylgermanes by [3 + 2] Cycloaddition of Germenes to Imino Esters 77
5.1.19.7.5 Method 5: Application of Lithiated a-Haloalkylgermanes in gem-Silylation/Borylation Reactions To Give Polymetalated Methanes 78
5.1.20.4 Alkynylgermanes 82
5.1.20.4.1 Method 1: Synthesis from Halogermanes by Substitution 83
5.1.20.4.2 Method 2: Synthesis from Group 14 Metalloalkynyls by Metathesis with Alkenylgermanes 83
5.1.20.4.3 Method 3: Synthesis by Substitution with Aminogermanes 84
5.1.20.4.4 Method 4: Synthesis by Elimination of a-Alkoxyalkenylgermanes 84
5.1.20.4.5 Method 5: Applications of Alkynylgermanes as Protecting Groups 85
5.1.20.4.6 Method 6: Applications of Alkynylgermanes in Palladium(0)-Catalyzed Cross-Coupling Reactions 86
5.1.22.6 Aryl- and Heteroarylgermanes 88
5.1.22.6.1 Method 1: Synthesis from Halogermanes by Substitution with Arylmetals 88
5.1.22.6.1.1 Variation 1: Using Preformed Arylmetals 88
5.1.22.6.1.2 Variation 2: Using Barbier-Type Reactions 88
5.1.22.6.2 Method 2: Synthesis from Aryl Halides by Palladium(0)-Mediated Coupling with Germanium Hydrides 89
5.1.22.6.3 Method 3: Synthesis from Arylstannanes by Transmetalation with Germanium(IV) Chloride 89
5.1.22.6.4 Method 4: Synthesis of Aryl- and Heteroarylgermanes by Cycloaddition 90
5.1.22.6.5 Method 5: Applications of Arylgermanes as Linkers for Solid-Phase Synthesis 91
5.1.22.6.6 Method 6: Applications of Arylgermanes in Palladium(0)-Catalyzed Cross-Coupling Reactions 91
5.1.23.6 Vinylgermanes 96
5.1.23.6.1 Method 1: Synthesis from Vinyllithium and Vinyl Grignard Reagents by Transmetalation with Halogermanes 96
5.1.23.6.2 Method 2: Synthesis from Alkynes by Hydro-, Hetero-, and Metallogermylation 97
5.1.23.6.2.1 Variation 1: By Hydrogermylation 97
5.1.23.6.2.2 Variation 2: By Palladium(0)-Mediated Germylation 98
5.1.23.6.2.3 Variation 3: By Metallogermylation 99
5.1.23.6.3 Method 3: Synthesis from Vinylgermanes by Ruthenium-Catalyzed Metathesis 100
5.1.23.6.4 Method 4: Applications in Palladium(0)-Catalyzed Cross Coupling of Organic Halides 101
5.1.24.4 Propargyl- and Allenylgermanes 106
5.1.24.4.1 Method 1: Synthesis of Propargyl- and Allenylgermanes by Substitution 106
5.1.24.4.2 Method 2: Application of Allenylgermanes in [2 + 2]-Cycloaddition Reactions with Imino Esters 107
5.1.25.3 Benzylgermanes 110
5.1.25.3.1 Method 1: Synthesis from Halogermanes by Substitution with Benzylmetals 111
5.1.25.3.2 Method 2: Application in Palladium(0)-Catalyzed Cross Coupling 112
5.1.26.6 Allylgermanes 116
5.1.26.6.1 Method 1: Synthesis from Halogermanes by Substitution with Allylmetals 117
5.1.26.6.2 Method 2: Synthesis from Allyl Halides or Dienes by Germylene Insertion 118
5.1.26.6.3 Method 3: Synthesis from Allyl Halides by Palladium(0)-Mediated Coupling with Metallogermanes 118
5.1.26.6.4 Method 4: Synthesis from 3,4-Epoxypent-1-enes by Germyl Radical Addition 120
5.1.27.4 Alkylgermanes 124
5.1.27.4.1 Method 1: Synthesis from Halogermanes by Substitution with Alkylmetals 125
5.1.27.4.2 Method 2: Synthesis from Alkenes by Hydrogermylation 125
Volume 9:Fully Unsaturated Small Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom 128
9.11 Product Class 11: Selenophenes 128
9.11.4 Selenophenes 128
9.11.4.1 Synthesis by Ring-Closure Reactions 128
9.11.4.1.1 By Formation of Two Se--C Bonds and One C--C Bond 128
9.11.4.1.1.1 Fragments C--C--C, C, and Se 128
9.11.4.1.1.1.1 Method 1: From Ketene Dithioacetals and Sodium Selenide 128
9.11.4.1.1.1.2 Method 2: From ß-Chloroacrylonitriles and Sodium Selenide 130
9.11.4.1.1.2 Fragments C--C, C--C, and Se 131
9.11.4.1.1.2.1 Method 1: From Diphosphorylacetylene and Sodium Hydroselenide 131
9.11.4.1.2 By Formation of Two Se--C Bonds 132
9.11.4.1.2.1 Fragments C--C--C--C and Se 132
9.11.4.1.2.1.1 Method 1: Reaction of C4 Building Blocks with Sources of Selenium 132
9.11.4.1.2.1.1.1 Variation 1: Reaction of Conjugated 1,3-Dienes with Selenium Dioxide 132
9.11.4.1.3 By Formation of One Se--C Bond 133
9.11.4.1.3.1 Fragment Se--C--C--C--C 133
9.11.4.1.3.1.1 Method 1: Electrophilic Cyclization of Z-Selanylenynes 133
9.11.4.1.3.1.1.1 Variation 1: Reaction with Butyltellurium Tribromide 133
9.11.4.1.3.1.1.2 Variation 2: Reaction with Other Electrophiles 133
9.11.4.1.3.1.1.3 Variation 3: Copper(I) Iodide Catalyzed Cyclization 135
9.11.4.1.4 By Formation of One C--C Bond 135
9.11.4.1.4.1 Fragment C--C--C--Se--C 135
9.11.4.1.4.1.1 Method 1: Cyclization of a Dipropargyl Selenide 135
9.11.4.2 Synthesis by Ring Transformation 136
9.11.4.2.1 Method 1: Thermal Decomposition of Selenadiazoles in the Presence of Arylacetylenes 136
9.11.4.2.2 Method 2: Formal Exchange of Magnesium with Selenium 137
9.11.4.3 Synthesis by Substituent Modification 138
9.11.4.3.1 Substitution of Metals 138
9.11.4.3.1.1 Method 1: Substitution Reactions Involving Organoboron Derivatives 138
9.11.4.3.2 Substitution of Heteroatoms 138
9.11.4.3.2.1 Method 1: Substitution of Halogens by Lithium 138
9.11.4.3.2.2 Method 2: Metal-Assisted Cross Coupling of Haloselenophenes 140
9.11.4.3.2.2.1 Variation 1: Coupling with Alkynes 140
9.11.4.3.2.2.2 Variation 2: Coupling with Alcohols 141
9.11.4.3.2.2.3 Variation 3: Coupling with Thiols 142
9.12 Product Class 12: Tellurophenes 146
9.12.3 Tellurophenes 146
9.12.3.1 Synthesis by Ring-Closure Reactions 147
9.12.3.1.1 By Formation of Two Te--C Bonds 147
9.12.3.1.1.1 Fragments C--C--C--C and Te 147
9.12.3.1.1.1.1 Method 1: Reaction of C4 Building Blocks with Sources of Tellurium 147
9.12.3.1.1.1.1.1 Variation 1: Reaction of 2,3-Dimethoxybuta-1,3-diene with Tellurium Dichloride 147
9.12.3.1.1.1.1.2 Variation 2: Reaction of In Situ Generated Sodium Telluride and Buta-1,3-diyne 147
9.12.3.1.1.1.1.3 Variation 3: Reaction of 1,4-Diphenylbuta-1,3-diyne with Diethyl Ditelluride 148
9.12.3.1.2 By Formation of One Te--C Bond 149
9.12.3.1.2.1 Fragment Te--C--C--C--C 149
9.12.3.1.2.1.1 Method 1: Cyclization of 1-(Alkyltellanyl)but-1-en-3-ynes 149
9.12.3.1.2.1.1.1 Variation 1: Reaction with Butyltellurium Tribromide 149
9.12.3.1.2.1.1.2 Variation 2: Reaction with a Copper(I) Iodide Catalyst 150
9.12.3.2 Synthesis by Substituent Modification 150
9.12.3.2.1 Substitution of Metals 150
9.12.3.2.1.1 Method 1: Substitution Reactions Involving Organostannanes 150
9.12.3.2.1.2 Method 2: Substitution Reactions Involving Organoboron Derivatives 152
9.12.3.2.2 Substitution of Heteroatoms 152
9.12.3.2.2.1 Method 1: Metal-Assisted Cross Coupling of Halotellurophenes with Alkynes 152
Volume 11: Five-Membered Hetarenes with One Chalcogen and One Additional Heteroatom 156
11.9 Product Class 9: Isoxazoles 156
11.9.5 Isoxazoles 156
11.9.5.1 Synthesis by Ring-Closure Reactions 156
11.9.5.1.1 By Formation of Two Heteroatom--Carbon Bonds and One C--C Bond 156
11.9.5.1.1.1 Fragments C--C, N--O, and C 156
11.9.5.1.1.1.1 Method 1: One-Pot Four-Component Coupling 156
11.9.5.1.2 By Formation of Two Heteroatom--Carbon Bonds 156
11.9.5.1.2.1 Fragments C--C--C and N--O 156
11.9.5.1.2.1.1 Method 1: Synthesis of Hydroxyisoxazoles and Isoxazolones by Reactions of Hydroxylamine with 3-Oxo Esters and 1,3-Diesters 157
11.9.5.1.2.1.2 Method 2: By Reactions of Hydroxylamine with a,ß-Unsaturated Carbonyl Compounds 158
11.9.5.1.3 By Formation of One Heteroatom--Carbon and One C--C Bond 159
11.9.5.1.3.1 Fragments O--N--C and C--C 159
11.9.5.1.3.1.1 Method 1: From Nitrile Oxides and Alkynes 159
11.9.5.1.3.1.1.1 Variation 1: Using Terminal Alkynes 159
11.9.5.1.3.1.1.2 Variation 2: Using Disubstituted Alkynes 164
11.9.5.1.3.1.2 Method 2: By Cycloaddition of Nitrile Oxides to C=C Bonds, Accompanied by Elimination or Dehydration 167
11.9.5.1.3.1.2.1 Variation 1: Reactions with Enols and Enolates 167
11.9.5.1.3.1.2.2 Variation 2: Reactions with Other Dipolarophiles 168
11.9.5.1.3.1.3 Method 3: Coupling of an Electron-Deficient Alkyne with a Nitroacetate 170
11.9.5.1.3.2 Fragments O--N--C--C and C 171
11.9.5.1.3.2.1 Method 1: From Dianions Derived from Oximes 171
11.9.5.1.3.2.1.1 Variation 1: Reactions of Oxime-Derived Dianions with Esters 171
11.9.5.1.4 By Formation of One Heteroatom--Heteroatom Bond 172
11.9.5.1.4.1 Fragment O--C--C--C--N 172
11.9.5.1.4.1.1 Method 1: Light-Induced Cycloaddition of 2-Cyanocycloalk-2-enones to Alkenes 172
11.9.5.1.5 By Formation of One Heteroatom--Carbon Bond 172
11.9.5.1.5.1 Fragment O--N--C--C--C 172
11.9.5.1.5.1.1 Method 1: Oxidative Cyclization of a,ß-Unsaturated Oximes 172
11.9.5.1.5.1.2 Method 2: Electrophilic Cyclization of Alkynyl O-Methyloximes 173
11.9.5.1.5.1.3 Method 3: Cyclization of 3-Oximinocarbonitriles 174
11.9.5.1.6 By Formation of One C--C Bond 175
11.9.5.1.6.1 Fragment C--O--N--C--C 175
11.9.5.1.6.1.1 Method 1: Cyclization of O-(ß-Oxoalkyl)-Substituted a-(Hydroxyimino)nitriles 175
11.9.5.2 Synthesis by Substituent Modification 176
11.9.5.2.1 Substitution of Existing Substituents 176
11.9.5.2.1.1 Of Halogens 176
11.9.5.2.1.1.1 By Carbofunctional Groups 176
11.9.5.2.1.1.1.1 Method 1: By Palladium-Catalyzed Cross Coupling 176
11.10 Product Class 10: 1,2-Benzisoxazoles and Related Compounds 180
11.10.5 1,2-Benzisoxazoles and Related Compounds 180
11.10.5.1 Synthesis by Ring-Closure Reactions 180
11.10.5.1.1 By Annulation to an Arene 180
11.10.5.1.1.1 By Formation of One O--C and One C--C Bond 180
11.10.5.1.1.1.1 Method 1: By 1,3-Dipolar Cycloaddition to Naphthoquinones 180
11.10.5.1.1.2 By Formation of One O--N Bond 181
11.10.5.1.1.2.1 Method 1: By Cyclization of 2-Hydroxyaryl Ketoximes and Aldoximes 181
11.10.5.1.1.2.2 Method 2: By Cyclization of N,2-Dihydroxybenzamides 182
11.10.5.1.1.3 By Formation of One O--C Bond 183
11.10.5.1.1.3.1 Method 1: By Cyclization of 2-Haloaryl Ketoximes 183
11.10.5.1.2 By Annulation to the Isoxazole Ring 184
11.10.5.1.2.1 Method 1: Cycloaddition to Isoxazoles 184
11.10.5.1.2.2 Method 2: Epoxide Ring Opening and Cyclization 185
11.10.5.1.2.3 Method 3: Annulation of a Hetarene 186
11.10.5.1.2.4 Method 4: Coupling of Diarylisoxazoles 188
11.10.5.2 Synthesis by Ring Transformation 189
11.10.5.2.1 Method 1: Rearrangement of Sultone Oximes 189
11.10.5.3 Aromatization 190
11.10.5.3.1 Method 1: Oxidative Aromatization of 4,5-Dihydro-1,2-benzisoxazoles 190
11.10.5.3.2 Method 2: Aromatization by Dehydrohalogenation 191
11.10.5.3.3 Method 3: Aromatization by Cleavage of N-Protected 2,3-Dihydro-1,2-benzisoxazoles 192
11.10.5.3.4 Method 4: Aromatization of Rings Fused to Isoxazoles 193
11.10.5.4 Synthesis by Substituent Modification 194
11.10.5.4.1 Substitution of Existing Substituents 195
11.10.5.4.1.1 Of Hydrogen 195
11.10.5.4.1.1.1 Method 1: Halogenation 195
11.10.5.4.1.2 Of Heteroatoms 196
11.10.5.4.1.2.1 Method 1: Substitution with Formation of a C--C Bond 196
11.13 Product Class 13: Benzoxazoles and Other Annulated Oxazoles 200
11.13.1 Synthesis by Ring-Closure Reactions 201
11.13.1.1 By Annulation to an Arene 201
11.13.1.1.1 By Formation of One O--C and One N--C Bond 201
11.13.1.1.1.1 Fragment O--C--C--C--N 201
11.13.1.1.1.1.1 Method 1: Synthesis from 2-Hydroxybenzoic Acids, Amides, or Azides 201
11.13.1.1.1.1.2 Method 2: Synthesis from 1-(2-Hydroxyphenyl)alkanone Oximes and Derivatives Thereof (Beckmann Rearrangement) 202
11.13.1.1.1.2 Fragments O--C--C--N and C 204
11.13.1.1.1.2.1 Method 1: Synthesis from 2-Nitrophenols and Carbonic Acid Derivatives or Aldehydes 204
11.13.1.1.1.2.2 Method 2: Synthesis from 2-Aminophenols and Carbonic Acid Derivatives 206
11.13.1.1.1.2.2.1 Variation 1: Synthesis of 2-Alkoxybenzoxazoles or Benzoxazol-2(3H)-ones 206
11.13.1.1.1.2.2.2 Variation 2: Synthesis of Benzoxazole-2(3H)-thiones 209
11.13.1.1.1.2.2.3 Variation 3: Synthesis of Benzoxazol-2-amines 210
11.13.1.1.1.2.3 Method 3: Synthesis from 2-Aminophenols and Carboxylic Acid Derivatives 211
11.13.1.1.1.2.3.1 Variation 1: Using (Trihalomethyl)arenes or Carboxylic Acid Ortho Esters 211
11.13.1.1.1.2.3.2 Variation 2: Using Carboxylic Acids 212
11.13.1.1.1.2.3.3 Variation 3: Using Carboxylic Acid Chlorides 216
11.13.1.1.1.2.3.4 Variation 4: Using Carboxylic Acid Anhydrides or Imidates 217
11.13.1.1.1.2.3.5 Variation 5: Using Carboxamides 218
11.13.1.1.1.2.3.6 Variation 6: Using Nitriles 220
11.13.1.1.1.2.3.7 Variation 7: Using Carbon Monoxide and Aryl Halides 220
11.13.1.1.1.2.3.8 Variation 8: Using Isocyanides 221
11.13.1.1.1.2.4 Method 4: Synthesis from 2-Aminophenols and Aldehydes 222
11.13.1.1.1.2.5 Method 5: Synthesis from 2-Aminophenols and Alcohols 222
11.13.1.1.1.3 Fragments C--C and N--C--O 223
11.13.1.1.1.3.1 Method 1: Synthesis from 1,2-Dihaloarenes and Carboxamides 223
11.13.1.1.1.4 Fragments C--C--N and C--O 224
11.13.1.1.1.4.1 Method 1: Synthesis from 2-Bromoanilines and Carboxylic Acid Chlorides 224
11.13.1.1.2 By Formation of One C--O Bond 225
11.13.1.1.2.1 Fragment C--C--N--C--O 225
11.13.1.1.2.1.1 Method 1: Synthesis from N-(2-Haloaryl)carboxamides 225
11.13.1.1.2.1.2 Method 2: Synthesis from N-(3-Halophenyl)carboxamides 228
11.13.1.1.2.2 Fragment O--C--C--N--C 229
11.13.1.1.2.2.1 Method 1: Synthesis from N-(2-Hydroxyphenyl)thioureas 229
11.13.1.1.2.2.2 Method 2: Synthesis from N-(2-Hydroxyphenyl)ureas 230
11.13.1.1.2.2.3 Method 3: Synthesis from N-(2-Hydroxyphenyl)carboxamides 231
11.13.1.1.2.2.4 Method 4: Synthesis from 2-(Alkylidenamino)phenols 233
11.13.1.2 By Annulation to the Heterocyclic Ring 235
11.13.2 Synthesis by Ring Transformation 236
11.13.2.1 Method 1: Ring Contraction of 1,4-Benzoxazines 236
11.13.3 Synthesis by Substituent Modification 237
11.13.3.1 Substitution of Existing Substituents 237
11.13.3.1.1 Of Hydrogen 237
11.13.3.1.1.1 Method 1: Lithiation 237
11.13.3.1.1.2 Method 2: Arylation 238
11.13.3.1.1.3 Method 3: Halogenation 239
11.13.3.1.1.4 Method 4: Sulfanylation 240
11.13.3.1.1.5 Method 5: Nitration 241
11.13.3.1.1.6 Method 6: Amination 241
11.13.3.1.2 Of Metals 241
11.13.3.1.2.1 Method 1: Cross-Coupling Reactions 241
11.13.3.1.3 Of Halogen 242
11.13.3.1.3.1 Method 1: Cyanation of 2-Chlorobenzoxazoles 242
11.13.3.1.3.2 Method 2: Fluorination of 2-Chlorobenzoxazoles 243
11.13.3.1.3.3 Method 3: Alkoxy- or Aryloxylation of 2-Halobenzoxazoles 243
11.13.3.1.3.4 Method 4: Amination of 2-Chlorobenzoxazoles 243
11.13.3.1.4 Of Oxygen 244
11.13.3.1.4.1 Method 1: Thionation of Benzoxazol-2(3H)-ones 244
11.13.3.1.5 Of Sulfur 244
11.13.3.1.5.1 Method 1: Chlorination of Benzoxazole-2(3H)-thiones 244
11.13.3.1.5.2 Method 2: Alkoxylation of Benzoxazole-2(3H)-thiones 245
11.13.3.1.5.3 Method 3: Amination of Benzoxazole-2(3H)-thiones 246
11.13.3.2 Addition Reactions 246
11.13.3.2.1 Method 1: Synthesis of 3-Alkylbenzoxazolium Salts 246
11.13.3.3 Modification of Substituents 247
11.13.3.3.1 Method 1: S-Alkylation of Benzoxazole-2(3H)-thiones 247
11.13.3.3.2 Method 2: N-Alkylation of Benzoxazol-2-amines 248
11.15 Product Class 15: Isothiazoles 254
11.15.4 Isothiazoles 254
11.15.4.1 Synthesis by Ring-Closure Reactions 256
11.15.4.1.1 By Formation of One S--C and One N--C Bond 256
11.15.4.1.1.1 Method 1: By Cycloaddition of Thiazyl Chloride to a Furan or a Pyrrole 256
11.15.4.1.1.1.1 Variation 1: By Addition of Thiazyl Chloride to a Furan 256
11.15.4.1.1.2 Method 2: By 1,3-Dipolar Cycloaddition of Nitrile Sulfides to Alkynes and Alkenes 259
11.15.4.1.1.2.1 Variation 1: From 1,3,4-Oxathiazol-2-ones 259
11.15.4.1.1.2.2 Variation 2: From Difluoro(imino)-.4-sulfanes 260
11.15.4.1.2 By Formation of One S--N Bond 260
11.15.4.1.2.1 Method 1: By Oxidative Ring Closure of 3-Aminoprop-2-enyl Thiocarbonyl and Related Compounds 260
11.15.4.1.2.1.1 Variation 1: From 3-Aminoprop-2-enethioamides or 3-Aminoprop-2-enyl Thioketones 260
11.15.4.1.2.1.2 Variation 2: From (1E)-N-Hydroxy-3,3-bis(methylsulfanyl)prop-2-en-1-imines 267
11.15.4.1.2.1.3 Variation 3: From 2-[(Diphenyl-.4-sulfanylidene)amino]-4,4-dimethyl-6-oxocyclohex-1-ene-1-carbothioamides 268
11.15.4.1.2.2 Method 2: From Bis(3-amino-3-oxopropyl) Disulfides 269
11.15.4.1.2.3 Method 3: From 3-Chloroprop-2-enals 269
11.15.4.1.2.4 Method 4: From 2-Sulfanylvinyl Ketones and O-Sulfonylhydroxylamines 270
11.15.4.1.2.5 Method 5: From tert-Butyl 2-Cyano-1,3,3,3-tetrafluoropropenyl Sulfide 271
11.15.4.1.3 By Formation of One C--C Bond 271
11.15.4.1.3.1 Method 1: By Base-Promoted Intramolecular Cyclization 271
11.15.4.1.3.1.1 Variation 1: Of Methyl [(Benzylsulfonyl)amino](oxo)acetate 272
11.15.4.2 Synthesis by Ring Transformation 272
11.15.4.2.1 Method 1: From 4,5-Dichloro-1,2,3-dithiazolium Chloride and Methyl 3-Aminocrotonate 272
11.15.4.3 Synthesis by Substituent Modification 273
11.15.4.3.1 Substitution of Existing Substituents 273
11.15.4.3.1.1 Of Heteroatoms 273
11.15.4.3.1.1.1 Method 1: Electrophilic Substitution 273
11.15.4.3.1.1.2 Method 2: Nucleophilic Substitution 275
11.15.4.3.1.1.2.1 Variation 1: Of Isothiazol-3-amine 1,1-Dioxides 275
11.15.4.3.1.1.2.2 Variation 2: Of Aryl 4,5-Dichloroisothiazol-3-yl Ketones and Related Compounds 277
11.15.4.3.1.1.3 Method 3: Isothiazole-5-carbaldehydes and 5-Alkylisothiazoles from Isothiazol-5-yllithiums 279
11.15.4.3.1.1.4 Method 4: Substitution of Halogens by Carbofunctional Groups 280
11.15.4.3.1.1.4.1 Variation 1: Castro-Stevens Coupling 280
11.15.4.3.1.1.4.2 Variation 2: Stille Coupling 280
11.15.4.3.1.1.4.3 Variation 3: Suzuki-and Negishi-like Couplings 281
11.15.4.3.1.1.4.4 Variation 4: Sonogashira and Ullmann Couplings 285
11.15.4.3.1.1.4.5 Variation 5: Heck Coupling 286
11.15.4.3.2 Addition Reactions 287
11.15.4.3.2.1 Addition of Organic Groups 287
11.15.4.3.2.1.1 Method 1: Annulation of a Heterocyclic Ring by 1,3-Dipolar Additions 287
11.15.4.3.2.1.2 Method 2: O-Alkylation of Isothiazol-3(2H)-ones 288
11.15.4.3.2.2 Addition of Heteroatoms 289
11.15.4.3.2.2.1 Method 1: Oxidation 289
11.15.4.3.2.2.2 Method 2: Amination 291
11.15.4.3.3 Modification of Substituents 292
11.15.4.3.3.1 Method 1: From Acylthiazoles 292
11.16 Product Class 16: Benzisothiazoles 296
11.16.3 Benzisothiazoles 296
11.16.3.1 1,2-Benzisothiazoles 296
11.16.3.1.1 Synthesis by Ring-Closure Reactions 297
11.16.3.1.1.1 By Formation of One S--C and One C--C Bond 297
11.16.3.1.1.2 By Formation of One S--N and/or One N--C Bond 298
11.16.3.1.1.2.1 Method 1: From Thiols, Disulfides, and Related Compounds 298
11.16.3.1.1.2.2 Method 2: From Oximes 299
11.16.3.1.1.2.3 Method 3: From (Aminosulfanyl)arenes 299
11.16.3.1.1.2.4 Method 4: From Disulfides 302
11.16.3.1.1.2.5 Method 5: From 2-Acylbenzenesulfonamides or 2-(Sulfinyl)benzamides 302
11.16.3.1.2 Synthesis by Substituent Modification 307
11.16.3.1.2.1 Substitution of Existing Substituents 307
11.16.3.1.2.1.1 Nucleophilic Substitution 307
11.16.3.1.2.2 Addition Reactions 307
11.16.3.1.2.2.1 Addition of Organic Groups 307
11.16.3.1.2.2.1.1 Method 1: Alkylation of Saccharins 307
11.16.3.1.2.2.1.2 Method 2: Alkylation of 4,6-Dinitro-1,2-benzisothiazole or 4,6-Dinitro-1,2-benzisothiazol-3(2H)-one 308
11.16.3.2 2,1-Benzisothiazoles 309
11.16.3.2.1 Synthesis by Ring Transformation 309
11.16.3.2.1.1 Method 1: From an Adduct of 3-Phenyl-2-thioxo-2,3-dihydrothieno[2,3-d]thiazol-6(5H)-one and N,N-Dimethyl-4-nitrosoaniline 309
11.16.3.2.2 Synthesis by Substituent Modification 310
11.16.3.2.2.1 Substitution of Existing Substituents 310
11.16.3.2.2.1.1 Of Hydrogen 310
11.17 Product Class 17: Thiazoles 314
11.17.6 Thiazoles 314
11.17.6.1 Synthesis by Ring-Closure Reactions 315
11.17.6.1.1 By Formation of Three Heteroatom--Carbon Bonds 315
11.17.6.1.1.1 By Formation of One S--C Bond and Two N--C Bonds 315
11.17.6.1.1.1.1 Fragments S--C, C--C, and N 315
11.17.6.1.1.1.1.1 Method 1: From a-Halo Ketones and Supported Reagents 315
11.17.6.1.2 By Formation of Two Heteroatom--Carbon Bonds and One C--C Bond 315
11.17.6.1.2.1 Fragments S--C, N--C, and C 315
11.17.6.1.2.1.1 Method 1: From Isothiocyanates, Cyanamide, and “Acidic” Methyl Halides 315
11.17.6.1.2.2 Fragments N--C--S, C, and C 316
11.17.6.1.2.2.1 Method 1: From Aldehydes, Haloforms, and Thiourea 316
11.17.6.1.2.2.2 Method 2: From Acid Chlorides, Ammonium Thiocyanate, Ethyl Bromopyruvate, and Tetramethylthiourea 317
11.17.6.1.2.3 Fragments C--N--C, C, and S 318
11.17.6.1.2.3.1 Method 1: From Dimethyl Cyanocarbonodithioimidoate, Activated Alkyl Halides, and a Sulfur Source 318
11.17.6.1.3 By Formation of Two Heteroatom--Carbon Bonds 319
11.17.6.1.3.1 Fragments C--C--N--C and S 319
11.17.6.1.3.1.1 Method 1: From N-Functionalized a-Aminonitriles 319
11.17.6.1.3.1.2 Method 2: From a-Acylamino Carbonyl Compounds 319
11.17.6.1.3.1.3 Method 3: From 2-Isocyanoacrylates 320
11.17.6.1.3.2 Fragments S--C--N and C--C 321
11.17.6.1.3.2.1 Method 1: From the Cyclocondensation of 1-Alkynyl(aryl)-.3-iodanes with Aminothiocarbonyl Compounds 321
11.17.6.1.3.2.2 Method 2: From a-Functionalized Carboxylic Acid Derivatives and Aminothiocarbonyl Compounds 323
11.17.6.1.3.2.2.1 Variation 1: From a-Functionalized Carboxyl Derivatives and Aminothiocarbonyl Compounds 323
11.17.6.1.3.2.2.2 Variation 2: From a-Functionalized Carbonitriles and Aminothiocarbonyl Compounds 324
11.17.6.1.3.2.3 Method 3: From a,ß-Unsaturated Carboxylic Acid Derivatives and Aminothiocarbonyl Compounds 325
11.17.6.1.3.2.4 Method 4: From a-Functionalized Ketones or Ketone Derivatives and Aminothiocarbonyl Compounds 326
11.17.6.1.3.2.4.1 Variation 1: From a-Diazo Ketones and Aminothiocarbonyl Compounds 326
11.17.6.1.3.2.4.2 Variation 2: From a-Halo and a,a-Dihalo Ketones and Aminothiocarbonyl Compounds 327
11.17.6.1.3.2.4.3 Variation 3: From a-Tosyloxy Ketones and Aminothiocarbonyl Compounds 329
11.17.6.1.3.2.4.4 Variation 4: From a-Dimethylsulfonio Ketones and Aminothiocarbonyl Compounds 331
11.17.6.1.3.2.4.5 Variation 5: From Ketones Halogenated In Situ and Aminothiocarbonyl Compounds 331
11.17.6.1.3.2.5 Method 5: From a,ß-Unsaturated Ketones and Aminothiocarbonyl Compounds 332
11.17.6.1.3.2.6 Method 6: From a-Halo Aldehydes, Acetals, or Enol Ethers and Aminothiocarbonyl Compounds 333
11.17.6.1.3.2.6.1 Variation 1: From a-Halo Aldehydes and Thioureas 333
11.17.6.1.3.2.6.2 Variation 2: From Ethyl 3-Ethoxyacrylate and Thioureas 334
11.17.6.1.3.2.6.3 Variation 3: From a-Halo Aldehydes and Thioamides 335
11.17.6.1.3.2.7 Method 7: From Enamines and Aminothiocarbonyl Compounds 336
11.17.6.1.3.2.8 Method 8: From 2,2,2-Trichloroethanols and Thioureas 337
11.17.6.1.3.2.9 Method 9: From 3-Haloalk-1-enes or 3-Haloalk-1-ynes and Aminothiocarbonyl Compounds 338
11.17.6.1.3.2.10 Method 10: From a-Halo Carbonyl Compounds and Thiocyanates 338
11.17.6.1.3.2.11 Method 11: From 1-Chloroalk-1-ynes and Aminothiocarbonyl Compounds 339
11.17.6.1.3.2.12 Method 12: From Allenes and Thioamides 340
11.17.6.1.3.3 Fragments C--C--S and C--N 340
11.17.6.1.3.3.1 Method 1: From 2-Sulfanylalkanoic Acids or Derivatives and Nitriles 340
11.17.6.1.3.4 Fragments C--C--N and C--S 342
11.17.6.1.3.4.1 Method 1: From a-Aminonitriles and Carbonyl Sulfide Sources 342
11.17.6.1.3.4.2 Method 2: From a-Amino Acids and Thiocarboxylic Acid Esters 343
11.17.6.1.3.4.3 Method 3: From Vinylamines and Chloroformylsulfenyl Chloride 343
11.17.6.1.3.4.4 Method 4: From Alk-2-ynylamines and Carbon Disulfide 344
11.17.6.1.3.5 Fragments C--C--S--C and N 345
11.17.6.1.3.5.1 Method 1: Cyclodehydration of S-(2-Oxoalkyl) Thioesters in the Presence of Ammonium Acetate 345
11.17.6.1.4 By Formation of One Heteroatom--Carbon and One C--C Bond 345
11.17.6.1.4.1 Fragments C--N--C--S and C 345
11.17.6.1.4.1.1 Method 1: From Resin-Bound N-Cyanocarbonimidodithioate and Functionalized Methyl Halides 345
11.17.6.1.4.1.2 Method 2: From N-Cyanocarbonimidodithioates and “Acidic” Methyl Halides 346
11.17.6.1.4.1.3 Method 3: From N-Cyanoimidothiocarbamates and “Acidic” Methyl Halides 346
11.17.6.1.4.1.4 Method 4: From N-(Diaminomethylene)- or N-[Amino(alkylsulfanyl)methylene]thioureas and a-Halo Ketones 347
11.17.6.1.4.1.5 Method 5: From N-(Aminomethylene)- or N-(Alkoxymethylene)thioureas and “Acidic” Methyl Halides 348
11.17.6.1.4.1.6 Method 6: From N-Acylthioureas and “Acidic” Methyl Halides 349
11.17.6.1.4.1.7 Method 7: From N-(Aminomethylene)- or N-(Hydroxymethylene)thioamides and “Acidic” Methyl Halides 350
11.17.6.1.4.2 Fragments C--N--C and S--C 351
11.17.6.1.4.2.1 Method 1: From N-Cyanoimidothioates and Sulfanylacetic Acid Derivatives 351
11.17.6.1.4.2.2 Method 2: From Alkyl Isocyanides and S--C Synthons 352
11.17.6.1.4.2.3 Method 3: From C-Aryl-N-methylglycines and S--C Synthons 352
11.17.6.1.5 By Formation of One Heteroatom--Carbon Bond 353
11.17.6.1.5.1 By Formation of One S--C Bond 353
11.17.6.1.5.1.1 Fragment C--C--N--C--S 353
11.17.6.1.5.1.1.1 Method 1: From N-Thiocarbonyl a-Amino Acids and Derivatives 353
11.17.6.1.5.1.1.2 Method 2: From a-(Thioacylamino)carbothioamides 354
11.17.6.1.5.1.1.3 Method 3: From a-Thioacylamino Acetals or a-(Thioacylamino)aldehydes 355
11.17.6.1.5.1.1.4 Method 4: From N-a-Haloacyl Isothiocyanates 356
11.17.6.1.5.1.1.5 Method 5: From Allenyl Isothiocyanates 357
11.17.6.1.5.1.1.6 Method 6: From N-[2,2-Dichloro-2-phenyl-1-(thioacetylamino)ethyl]benzenesulfonamide 358
11.17.6.1.5.1.1.7 Method 7: From ß-Hydroxy Thioamides 358
11.17.6.1.5.1.1.8 Method 8: From N-(2-Bromoalk-2-enyl)thioamides 359
11.17.6.1.5.1.1.9 Method 9: From 2,2-Dichloro-1-tosylvinyl Isothiocyanate and Various Nucleophiles 360
11.17.6.1.5.1.2 Fragment C--N--C--C--S 361
11.17.6.1.5.1.2.1 Method 1: From Di- and Tripeptides 361
11.17.6.1.5.1.2.2 Method 2: From Thiamine Disulfides 362
11.17.6.1.5.2 By Formation of One N--C Bond 364
11.17.6.1.5.2.1 Fragment C--C--S--C--N 364
11.17.6.1.5.2.1.1 Method 1: From a-Thiocyanato Carboxylic Acids and Derivatives 364
11.17.6.1.5.2.1.2 Method 2: From a-Imidoylsulfanyl Ketones 365
11.17.6.1.5.2.1.3 Method 3: From a-Thiocyanato Ketones 365
11.17.6.1.5.2.1.4 Method 4: From S-Alkynylisothiouronium or Thiobenzimidonium Salts and Base 366
11.17.6.1.5.2.1.5 Method 5: From 3-Aryl-2-thiocyanatopropanenitriles 367
11.17.6.1.5.2.1.6 Method 6: From 3-Thiocyanatoprop-1-ynes 368
11.17.6.1.5.2.2 Fragment C--S--C--C--N 368
11.17.6.1.5.2.2.1 Method 1: From 2-(Hydroxyimino)alkyl Dithiocarbonates 368
11.17.6.1.5.2.2.2 Method 2: From ß-Thiocyanatoenamines 369
11.17.6.1.6 By Formation of One C--C Bond 370
11.17.6.1.6.1 Fragment C--S--C--N--C 370
11.17.6.1.6.1.1 Method 1: From N-(1-Amino-2,2,2-trichloroethylidene)isothioureas 370
11.17.6.1.6.1.2 Method 2: From Alkyl N-Acylthioimidates 370
11.17.6.2 Synthesis by Ring Transformation 371
11.17.6.2.1 Method 1: By Ring Enlargement of Three-Membered Heterocycles 371
11.17.6.2.2 Method 2: By Formal Exchange of Ring Atoms with Retention of Ring Size 372
11.17.6.2.3 Method 3: By Ring Contraction of Heterocycles 373
11.17.6.3 Aromatization 374
11.17.6.3.1 Method 1: By Dehydration of Dihydrothiazoles 374
11.17.6.3.2 Method 2: Aromatization by Addition Reactions 375
11.17.6.3.2.1 Variation 1: Nucleophilic Additions to Exocyclic Double Bonds 375
11.17.6.3.2.2 Variation 2: S-Alkylation of Thiazole-2(3H)-thiones 376
11.17.6.3.2.3 Variation 3: S-Alkylation and N-Elimination of 3-Substituted Thiazole-2(3H)-thiones 377
11.17.6.3.2.4 Variation 4: N-Alkylation of 3-Substituted Thiazol-2(3H)-imines 377
11.17.6.3.3 Method 3: Elimination of Sulfur from Thiazole-2(3H)-thiones 378
11.17.6.3.4 Method 4: Base-Induced Conversion of 4,5-Dihydrothiazoles into Thiazoles 379
11.17.6.3.5 Method 5: Oxidation of 4,5-Dihydrothiazoles 380
11.17.6.3.6 Method 6: Oxidation of Thiazolidines 381
11.17.6.3.7 Method 7: Aromatization by Rearrangement (Isomerization) 382
11.17.6.4 Synthesis from Other Thiazoles 383
11.17.6.4.1 Addition Reactions 383
11.17.6.4.1.1 Method 1: Quaternization 383
11.17.6.4.1.2 Method 2: Formation of Thiazole 3-Oxides 384
11.17.6.4.2 Synthesis by Substituent Modification 384
11.17.6.4.2.1 Method 1: Replacement of Hydrogen by Deuterium 384
11.17.6.4.2.2 Method 2: Replacement of Hydrogen by Metals 385
11.17.6.4.2.2.1 Variation 1: Replacement of Hydrogen by Magnesium or Zinc 385
11.17.6.4.2.2.2 Variation 2: Replacement of Hydrogen by Silicon or Tin 386
11.17.6.4.2.2.3 Variation 3: Replacement of Hydrogen by Boron 387
11.17.6.4.2.3 Method 3: Replacement of Hydrogen by Carbon Electrophiles 388
11.17.6.4.2.4 Method 4: Replacement of Hydrogen by Non-Carbon Electrophiles 392
11.17.6.4.2.4.1 Variation 1: Halogenation of Thiazoles 392
11.17.6.4.2.4.2 Variation 2: Introduction of Sulfo or Thiocyanato Groups 393
11.17.6.4.2.4.3 Variation 3: Introduction of Alkylsulfanyl or Arylsulfanyl Groups 394
11.17.6.4.2.4.4 Variation 4: Nitration of Thiazoles 395
11.17.6.4.2.4.5 Variation 5: Introduction of Arylazo Groups 396
11.17.6.4.2.4.6 Variation 6: Replacement of Hydrogen by Phosphorus 397
11.17.6.4.2.5 Method 5: Introduction of Amino Groups 397
11.17.6.4.3 Synthesis of Thiazoles from Metalated Thiazoles 399
11.17.6.4.3.1 Method 1: Replacement of Lithium, Magnesium, or Zinc by Carbon Electrophiles 399
11.17.6.4.3.2 Method 2: Replacement of Silyl Groups by Hydrogen 400
11.17.6.4.3.3 Method 3: Replacement of Silyl or Stannyl Groups by Carbon Electrophiles 401
11.17.6.4.3.4 Method 4: Replacement of Stannyl Groups by Halogens 404
11.17.6.4.3.5 Method 5: Replacement of Metals by Other Groups 405
11.17.6.4.3.5.1 Variation 1: Replacement of Lithium by Sulfur-Containing Reagents 405
11.17.6.4.3.6 Method 6: Modification of Other Substituents 406
11.17.6.4.3.6.1 Variation 1: Decarboxylation of Thiazolecarboxylic Acids and -carboxylates 406
11.17.6.4.3.6.2 Variation 2: Replacement of a Carbon Substituent by Nitrogen 407
11.17.6.4.3.6.3 Variation 3: Replacement of a Carbon Substituent by Halogen 407
11.17.6.4.3.6.4 Variation 4: Replacement of a Nitrogen Substituent by Hydrogen 408
11.17.6.4.3.6.5 Variation 5: Replacement of a Nitrogen Substituent by Carbon 408
11.17.6.4.3.6.6 Variation 6: Replacement of One Nitrogen Substituent by Another 409
11.17.6.4.3.6.7 Variation 7: Replacement of Nitrogen Substituents by Halogens 409
11.17.6.4.3.6.8 Variation 8: Replacement of Oxygen or Sulfur Groups by Hydrogen 410
11.17.6.4.3.6.9 Variation 9: Replacement of Oxygen or Sulfur Groups by Carbon-Containing Substituents 411
11.17.6.4.3.6.10 Variation 10: Replacement of Oxygen or Sulfur Substituents by Nitrogen 413
11.17.6.4.3.6.11 Variation 11: Replacement of Oxygen or Sulfur Substituents by Halogen 414
11.17.6.4.3.6.12 Variation 12: Replacement of Oxygen Substituents by Sulfur 415
11.17.6.4.3.6.13 Variation 13: Replacement of Sulfur Substituents by Oxygen 415
11.17.6.4.3.6.14 Variation 14: Replacement of One Sulfur Substituent by Another 416
11.17.6.4.3.6.15 Variation 15: Replacement of Halogen by Hydrogen 417
11.17.6.4.3.6.16 Variation 16: Replacement of Halogen by Carbon Nucleophiles 417
11.17.6.4.3.6.17 Variation 17: Replacement of Halogen by Nitrogen Substituents 418
11.17.6.4.3.6.18 Variation 18: Replacement of Halogen by Oxygen or Sulfur Substituents 419
11.17.6.4.3.6.19 Variation 19: Replacement of Halogen by Tin or Boron Substituents 419
11.17.6.5 Modification of Substituents 421
11.17.6.5.1 Modification of Carbofunctional Substituents 421
11.17.6.5.1.1 Method 1: Condensation at Alkyl Groups of Alkylthiazoles 421
11.17.6.5.1.2 Method 2: Other Transformations of Carbofunctional Substituents of Thiazoles 421
11.17.6.5.2 Modification of Heterofunctional Substituents 423
11.17.6.5.2.1 Method 1: Modification of O- and S-Substituents 423
11.17.6.5.3 Rearrangement of Substituents 424
11.18 Product Class 18: Benzothiazoles and Related Compounds 440
11.18.5 Benzothiazoles 440
11.18.5.1 Synthesis by Ring-Closure Reactions 441
11.18.5.1.1 By Annulation to an Arene or Hetarene Ring 441
11.18.5.1.1.1 By Formation of One S--C and One N--C Bond 441
11.18.5.1.1.1.1 Method 1: From 2-Amino(het)arenethiols 441
11.18.5.1.1.1.1.1 Variation 1: With Cyanamides 441
11.18.5.1.1.1.1.2 Variation 2: With Anhydrides 441
11.18.5.1.1.1.1.3 Variation 3: With Carboxylic Acids 441
11.18.5.1.1.1.1.4 Variation 4: With Aldehydes 442
11.18.5.1.1.2 By Formation of One S--C Bond 444
11.18.5.1.1.2.1 Method 1: From N-Arylthioureas 444
11.18.5.1.1.2.1.1 Variation 1: With a Leaving Group in the 2-Position 444
11.18.5.1.1.2.2 Method 2: From N-Arylthioamides 445
11.18.5.1.1.2.2.1 Variation 1: From 2-Unsubstituted N-Arylthioamides 445
11.18.5.1.1.2.2.2 Variation 2: From N-Arylthioamides with a Halogen or Hydroxy Leaving Group in the 2-Position 447
11.18.5.1.1.2.2.3 Variation 3: In Situ Formation from Amides 448
11.18.5.1.1.2.3 Method 3: From ortho-Nitrogen-Fuctionalized Aryl Disulfides 449
11.18.5.2 Synthesis by Substituent Modification 450
11.18.5.2.1 Substitution of Existing Substituents 450
11.18.5.2.1.1 Of Heteroatoms 450
11.18.5.2.1.1.1 Method 1: By Hetero Functions 450
11.20 Product Class 20: Isoselenazoles 452
11.20.3 Isoselenazoles 452
11.20.3.1 Synthesis by Ring-Closure Reactions 452
11.20.3.1.1 By Formation of One Se--N, One Se--C, and One N--C Bond 452
11.20.3.1.1.1 Fragments C--C--C, N, and Se 452
11.20.3.1.1.1.1 Method 1: Reaction of a,ß-Unsaturated ß-Chloroaldehydes with Potassium Selenocyanate and Ammonium Chloride 452
11.20.3.1.2 By Formation of One Se--N and One N--C Bond 454
11.20.3.1.2.1 Fragments Se-C--C--C and N 454
11.20.3.1.2.1.1 Method 1: Reaction of 4-(Methylselanyl)- or 4-(Phenylselanyl)-1,1,1-trihaloalk-3-en-2-ones with Bromine and Ammonia 454
11.20.3.1.2.1.2 Method 2: Reaction of ß-[(N,N-Dimethylcarbamoyl)selanyl]alkenyl Ketones and Hydroxylamine-O-sulfonic Acid 455
11.20.3.1.3 By Formation of One Se--N and One Se--C Bond 455
11.20.3.1.3.1 Fragments N--C--C--C and Se 455
11.20.3.1.3.1.1 Method 1: Reaction of Alkynone Oxime 4-Toluenesulfonates with Sodium Hydrogen Selenide or N,N-Dimethylselenocarbamate Ion 455
11.20.3.2 Synthesis by Substituent Modification 456
11.20.3.2.1 Modification of Substituents 456
11.20.3.2.1.1 Method 1: Reaction of 3-(Trichloromethyl)isoselenazoles with Sulfuric Acid 456
11.21 Product Class 21: Annulated Isoselenazole Compounds 460
11.21.5 Annulated Isoselenazole Compounds 460
11.21.5.1 Synthesis by Ring-Closure Reactions 460
11.21.5.1.1 By Formation of One Se--N and One N--C Bond 460
11.21.5.1.1.1 Fragments Se--Arene--C and N 460
11.21.5.1.1.1.1 Method 1: Reaction of 2-(Chloroselanyl)benzoyl Chloride with 4-Amino benzoic Acid 460
11.21.5.1.2 By Formation of One Se--N Bond 461
11.21.5.1.2.1 Fragment Se--Arene--C--N 461
11.21.5.1.2.1.1 Method 1: ortho-Metalation of Isophthalamides, Selenation, and Subsequent Oxidation 461
11.22 Product Class 22: Selenazoles 464
11.22.4 Selenazoles 464
11.22.4.1 Synthesis by Ring-Closure Reactions 464
11.22.4.1.1 By Formation of Two Se--C Bonds and One C--C Bond 464
11.22.4.1.1.1 Fragments C--N--C, Se, and C 464
11.22.4.1.1.1.1 Method 1: Reaction of Dithioimidocarbonates with Secondary Amines, Sodium Selenide, and Haloalkanes 464
11.22.4.1.2 By Formation of One Se--C and One N--C Bond 466
11.22.4.1.2.1 Fragments Se--C--N and C--C 466
11.22.4.1.2.1.1 Method 1: Reaction of Selenocarboxamides with a-Halocarbonyl Compounds 466
11.22.4.1.2.1.1.1 Variation 1: Reaction of Selenocarboxamides with a-Bromo Ketones 466
11.22.4.1.2.1.1.2 Variation 2: Reaction of Selenoformamide with a-Bromo Ketones 468
11.22.4.1.2.1.1.3 Variation 3: Reaction of Cyanoselenoamide or Bis(selenoamides) with a-Halocarbonyl Compounds 469
11.22.4.1.2.1.2 Method 2: Reaction of Selenocarboxamides with Acetylenic Compounds 470
11.22.4.1.2.1.3 Method 3: Cycloaddition of Selenocarboxamides with Selanyl Propadienyl Cations 471
11.22.4.1.2.1.4 Method 4: From Selenoureas and a-Halocarbonyl Compounds 472
11.22.4.1.2.1.4.1 Variation 1: Reaction of N-Phenylselenourea with 1,3-Dichloroacetone 472
11.22.4.1.2.1.4.2 Variation 2: Reaction of Selenourea or N-Benzoylselenourea with a-Halocarbonyl Compounds 475
11.22.4.1.2.1.4.3 Variation 3: Reaction of Selenourea with a-Bromo Ketones in the Presence of ß-Cyclodextrin 476
11.22.4.1.2.1.4.4 Variation 4: Reaction of Selenourea with a-Bromo-ß-oxo Esters in the Presence of ß-Cyclodextrin 477
11.22.4.1.2.1.4.5 Variation 5: Reaction of Selenourea with a-Bromo Ketones in the Presence of Copper(II) Chloride–Pyridine Complex 478
11.22.4.1.2.1.4.6 Variation 6: Reaction of Selenourea with 1-Aryl-2-bromoethanones in an Ionic Liquid/Water System 479
11.22.4.1.2.1.5 Method 5: From Selenoureas and a,ß-Unsaturated Carbonyl Compounds 481
11.22.4.1.2.1.5.1 Variation 1: Reaction of N,N-Dialkylselenoureas with a,ß-Unsaturated Ketones in the Presence of Iron(III) Chloride 481
11.22.4.1.2.1.5.2 Variation 2: Reaction of N,N-Dialkylselenoureas with a,ß-Unsaturated Aldehydes in the Presence of Iron(III) Chloride 482
11.22.4.1.2.1.5.3 Variation 3: Reaction of N,N-Dialkylselenoureas with 1,2-Dicarbonyl Compounds in the Presence of Iron(III) Chloride 482
11.22.4.1.2.1.6 Method 6: From Selenoureas and a-Haloacetonitriles 483
11.22.4.1.2.1.7 Method 7: From Selenoureas and Acetylenic Compounds 485
11.22.4.1.3 By Formation of One Se--C and One C--C Bond 485
11.22.4.1.3.1 Fragments Se--C--N--C and C 485
11.22.4.1.3.1.1 Method 1: From Selenazadienes and a-Halocarbonyl Compounds 485
11.22.4.1.3.1.1.1 Variation 1: Reaction of N,N-Dialkyl-N'-[(dimethylamino)methylene]selenoureas with Chloroacetyl Chloride 485
11.22.4.1.3.1.1.2 Variation 2: Reaction of N,N-Dialkyl-N'-[(dimethylamino)methylene]selenoureas and a-Halo Ketones 488
11.22.4.1.3.1.2 Method 2: From Selenazadienes and Chloroacetonitrile 489
11.22.4.1.3.2 Fragments C--N--C and Se--C 490
11.22.4.1.3.2.1 Method 1: From Dithioimidocarbonates and Ethaneselenothioates 490
11.22.4.1.4 By Formation of One C--C Bond 492
11.22.4.1.4.1 Fragment C--Se--C--N--C 492
11.22.4.1.4.1.1 Method 1: Cyclization of N-Acylcarbamimidoselenoates 492
11.22.4.2 Synthesis by Substituent Modification 493
11.22.4.2.1 By Halogenation and Alkylation of the Selenium Atom 493
11.22.4.2.1.1 Method 1: From Selenazoles to 1,1-Dihaloselenazoles and Se-Alkylselenazolium Ions 493
11.22.4.2.2 Synthesis by Modification of Substituents in the Side Chain 495
11.22.4.2.2.1 Method 1: Oxidation of 2-Benzylselenazoles and Subsequent Alkaline Hydrolysis 495
11.22.4.2.2.2 Method 2: Azo Coupling of Substituted Selenazol-2-amines 498
11.23 Product Class 23: Annulated Selenazole Compounds 502
11.23.3 Annulated Selenazole Compounds 502
11.23.3.1 Synthesis by Ring-Closure Reactions 502
11.23.3.1.1 By Annulation to an Arene 502
11.23.3.1.1.1 By Formation of Two Se--C Bonds 502
11.23.3.1.1.1.1 Fragments Arene--N--C and Se 502
11.23.3.1.1.1.1.1 Method 1: From 2-Halophenyl Isocyanides, Elemental Selenium, and Heteroatom Nucleophiles 502
11.23.3.1.2 By Annulation to a Selenazole 503
11.23.3.1.2.1 Method 1: Formation of 4-Chloro-1,2,3-triazines 503
11.23.3.2 Synthesis by Substituent Modification 504
11.23.3.2.1 Method 1: Modification of the Benzo Ring by Amination, Oxidation, and Substitution 504
11.23.3.2.2 Method 2: Modification of the Selenazole Ring by N-Alkylation and C--C Bond Formation on a Methyl Group at the C2 Position 505
11.23.3.2.2.1 Variation 1: Condensation with Ortho Esters or Imidamides 505
11.23.3.2.2.2 Variation 2: Condensation with Squaric Acid 508
11.23.3.2.2.3 Variation 3: Condensation with a Thiazole-5-carbaldehyde 510
11.25 Product Class 25: Isotellurazoles, and Annulated Isotellurazole and Tellurazole Compounds 514
11.25.4 Isotellurazoles, and Annulated Isotellurazole and Tellurazole Compounds 514
11.25.4.1 Isotellurazoles (1,2-Tellurazoles) 514
11.25.4.1.1 Synthesis by Ring-Closure Reactions 514
11.25.4.1.1.1 By Formation of One Te--N and One N--C Bond 514
11.25.4.1.1.1.1 Fragments Te--C--C--C and N 514
11.25.4.1.1.1.1.1 Method 1: Reaction of ß-[(N,N-Dimethylcarbamoyl)tellanyl]alkenyl Ketones with Hydroxylamine-O-sulfonic Acid 514
11.25.4.1.1.2 By Formation of One Te--N and One Te--C Bond 516
11.25.4.1.1.2.1 Fragments N--C--C--C and Te 516
11.25.4.1.1.2.1.1 Method 1: Reaction of Alkynone Oxime 4-Toluenesulfonates with N,N-Dimethyltellurocarbamate Ion 516
11.25.4.2 1,2-Benzisotellurazoles 517
11.25.4.2.1 Synthesis by Ring-Closure Reactions 517
11.25.4.2.1.1 By Formation of One N--Te Bond 517
11.25.4.2.1.1.1 Fragment Te--Arene--C--N 517
11.25.4.2.1.1.1.1 Method 1: ortho-Metalation of Isophthalamides, Telluration, and Subsequent Oxidation 517
11.25.4.3 Benzotellurazoles 518
11.25.4.3.1 Synthesis by Ring-Closure Reactions 518
11.25.4.3.1.1 By Formation of Two Te--C Bonds 518
11.25.4.3.1.1.1 Fragments Arene--N--C and Te 518
11.25.4.3.1.1.1.1 Method 1: Copper(I)-Cataly zed Reaction of 2-Iodophenyl Isocyanide with Tellurium and an Amine Nucleophile 518
Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms 520
16.20 Product Class 20: Pyridopyrazines 520
16.20.3 Pyridopyrazines 520
16.20.3.1 Pyrido[2,3-b]pyrazines 522
16.20.3.1.1 Synthesis by Ring-Closure Reactions 522
16.20.3.1.1.1 By Formation of Two N--C Bonds 522
16.20.3.1.1.1.1 Method 1: Condensation of Pyridine-2,3-diamines with Dicarbonyl Compounds 522
16.20.3.1.1.1.2 Method 2: Reaction of Pyridine-2,3-diamine with Alloxane or Epoxides 525
16.20.3.1.1.1.3 Method 3: Reaction of Pyridine-2,3-diamine with Ethoxy(imino)acetates 526
16.20.3.1.1.2 By Formation of One N--C Bond 526
16.20.3.1.1.2.1 Method 1: Phosphoryl Chloride Mediated Heteroannulation of N,S-Acetals 526
16.20.3.1.2 Synthesis by Substituent Modification 527
16.20.3.2 Pyrido[3,4-b]pyrazines 529
16.20.3.2.1 Synthesis by Ring-Closure Reactions 529
16.20.3.2.1.1 By Formation of Two N--C Bonds 529
16.20.3.2.1.1.1 Method 1: Condensation of Pyridine-3,4-diamines with Dicarbonyl Compounds 529
16.20.3.2.2 Synthesis by Substituent Modification 530
Volume 31: Arene—X (X = Hal, O, S, Se, Te, N, P) 534
31.4 Product Class 4: Aryl Iodine Compounds 534
31.4.2.2 Iodoarenes 534
31.4.2.2.1 Synthesis of Iodoarenes 534
31.4.2.2.1.1 Method 1: Electrophilic Iodination 534
31.4.2.2.1.1.1 Variation 1: Of Fluorophenols 534
31.4.2.2.1.2 Method 2: Iodination by Hunsdiecker-Type Decarboxylation 537
31.4.2.2.1.2.1 Variation 1: Using Classical Reagents (Silver, Mercury, or Thallium Salts) 537
31.4.2.2.1.2.2 Variation 2: Using the Barton Modification 538
31.4.2.2.1.3 Method 3: Iodination of Quinones 539
31.4.2.2.1.3.1 Variation 1: Using an Iodine Addition-Elimination Sequence 539
31.4.2.2.1.3.2 Variation 2: Using an Addition-Oxidation Sequence 542
31.4.2.2.1.3.3 Variation 3: Using Hypervalent Iodine Compounds 543
Author Index 546
Abbreviations 576
List of All Volumes 582

Abstracts


5.1.1.8 Germanium Hydrides


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of germanium hydrides, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · hydrides · germyl hydride · germanium hydride · radical reduction · hydrogermylation · germylation · tris(2-furyl)germane · cross coupling · germyl cation

5.1.15.2 Germanium Cyanides


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of germanium cyanides, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · cyanides · cyanation · halides · silver · germole

5.1.16.6 Acylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of acylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · enol ethers · [2+2] cycloaddition · azetidines · BINAP · alkynes · carbonylation · furans · radicals · polymerization · amides

5.1.18.4 α-Halo- and α-Alkoxyvinylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of α-halo- and α-alkoxyvinylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · substitution · hydrometalation · carbometalation · halogenation · alkynes · germatranes · desulfonylation · cross coupling · palladium(0) · styrenes

5.1.19.7 α-Halo-, α-Hydroxy,- α-Alkoxy-, and α-Aminoalkylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of α-halo-, α-hydroxy-, α-alkoxy-, and α-aminoalkylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · [1,2] rearrangements · oxo-carbenium · oxonium · substitution · hydroboration · boronic ester · [3+2] cycloaddition · germenes · silylation · borylation

5.1.20.4 Alkynylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkynylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · alkynes · [3+2] cycloadditions · hydrostannylation · hydroboration · cross coupling · palladium(0) · substitution · cross metathesis · elimination · Pauson–Khand reaction · cyclopentenones

5.1.22.6 Aryl- and Heteroarylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of aryl- and heteroarylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · cross coupling · Stille reaction · Hiyama–Denmark reaction · substitution · Barbier conditions · transmetalation · cycloaddition · solid-phase synthesis · traceless linkers

5.1.23.6 Vinylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of vinylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · vinylgermanes · alkenylgermanes · β-effect · hyperconjugation · hydrogermylation · heterogermylation · metallogermylation · cross coupling · germatranes

5.1.24.4 Propargyl- and Allenylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of propargyl- and allenylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · propargylgermanes · allenylgermanes · transmetalation · Grignard reagents · [2+2] cycloaddition

5.1.25.3 Benzylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of benzylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · benzylgermanes · cross coupling · boscalid

5.1.26.6 Allylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of allylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · alkenylgermanes · allylation · germylene · π-allylpalladium(0) · metallogermanes · Baylis–Hillman · germyl radicals

5.1.27.4 Alkylgermanes


A. C. Spivey and C.-C. Tseng

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of alkylgermanes, their properties, and synthetic reactions. It focuses on the literature published in the period 2001–2009.

Keywords: germanes · germanium compounds · alkenylgermanes · ADMET · germylene · hydrogermylation

9.11.4 Selenophenes


J. Schatz and M. Seßler

This manuscript is intended to update the first report on the synthesis of selenophenes in Science of Synthesis and will briefly summarize essential, more recent findings concerning this heterocyclic system in the first decade of the new millennium. During this time, applications of selenophene-based materials in organic electronics and photonics received considerable interest, and selenophene-containing π-conjugated compounds have been proposed as organic magnetic materials.

Keywords: selenophenes · active methylene compounds · selanylenynes · cyclization · aromatization · metal–halogen exchange

9.12.3 Tellurophenes


J. Schatz and M. Seßler

This manuscript is intended to update the earlier report on the synthesis of tellurophenes in Science of Synthesis, and summarizes essential, more recent findings concerning this heterocyclic system in the first decade of the new millennium. The decade 2000–2010 saw an increasing interest in organic molecules as functional materials, shifting the focus away from biological or pharmaceutical application. This trend could especially be observed for thiophenes, leading, not surprisingly, also to an increasing pursuit of potential applications of tellurophenes.

Keywords: tellurophenes · tellanylenynes · cyclization · aryl cross coupling

11.9.5 Isoxazoles


P. Margaretha

This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of isoxazoles (1,2-oxazoles). It focuses on the literature published in the period 2001–2009.

Keywords: isoxazoles · isoxazol-5-ones · dipolar cycloadditions · oximes · nitrile oxides · cyclization · multicomponent coupling · regioselectivity

11.10.5 1,2-Benzisoxazoles and Related Compounds


S. Härtinger

This update deals with...

Erscheint lt. Verlag 14.5.2014
Reihe/Serie Science of Synthesis
Science of Synthesis
Verlagsort Stuttgart
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik
Schlagworte acylgermanes • allenylgermanes • benzisothiazoles • benzisoxazoles • benzothiazoles • benzoxazoles • Chemie • Chemische Synthese • chemistry reference work • chemistry synthetic methods • Compound • Functional Group • functional groups • germanes • Germanium cyanides • heteroarylgermanes • iodoarenes • isoselenazoles • isotellurazole • isothiazoles • isoxazoles • Mechanism • Method • methods in organic synthesis • Organic Chemistry • organic chemistry reactions • organic chemistry review • organic chemistry synthesis • organic compound • organic method • organic reaction • organic reaction mechanism • Organic Syntheses • organic synthesis • Organisch-chemische Synthese • Organische Chemie • oxazoles • Peptide synthesis • Practical • practical organic chemistry • propargylgermanes • pyridopyrazines • Reactions • reference work • Review • review organic synthesis • review synthetic methods • selenazoles • selenophenes • Synthese • synthesis reference work • Synthetic chemistry • Synthetic Methods • Synthetic Organic Chemistry • synthetic transformation • tellurazole • tellurophenes
ISBN-10 3-13-178621-3 / 3131786213
ISBN-13 978-3-13-178621-0 / 9783131786210
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Wasserzeichen)
Größe: 17,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
CHF 82,95