Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Statistical Methods for Handling Incomplete Data - Jae Kwang Kim, Jun Shao

Statistical Methods for Handling Incomplete Data

, (Autoren)

Buch | Hardcover
223 Seiten
2013
Taylor & Francis Inc (Verlag)
978-1-4398-4963-7 (ISBN)
CHF 165,80 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Due to recent theoretical findings and advances in statistical computing, there has been a rapid development of techniques and applications in the area of missing data analysis. Statistical Methods for Handling Incomplete Data covers the most up-to-date statistical theories and computational methods for analyzing incomplete data.

Suitable for graduate students and researchers in statistics, the book presents thorough treatments of:






Statistical theories of likelihood-based inference with missing data
Computational techniques and theories on imputation
Methods involving propensity score weighting, nonignorable missing data, longitudinal missing data, survey sampling, and statistical matching

Assuming prior experience with statistical theory and linear models, the text uses the frequentist framework with less emphasis on Bayesian methods and nonparametric methods. It includes many examples to help readers understand the methodologies. Some of the research ideas introduced can be developed further for specific applications.

Introduction. Likelihood-Based Approach. Computation. Imputation. Propensity Scoring Approach. Nonignorable Missing Data. Longitudinal and Clustered Data. Application to Survey Sampling. Statistical Matching. Bibliography. Index.

Verlagsort Washington
Sprache englisch
Maße 156 x 234 mm
Gewicht 514 g
Themenwelt Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Naturwissenschaften Biologie
ISBN-10 1-4398-4963-3 / 1439849633
ISBN-13 978-1-4398-4963-7 / 9781439849637
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich