Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Data Mining the Web (eBook)

Uncovering Patterns in Web Content, Structure, and Usage
eBook Download: PDF
2007 | 1. Auflage
240 Seiten
John Wiley & Sons (Verlag)
978-0-470-10808-6 (ISBN)

Lese- und Medienproben

Data Mining the Web - Zdravko Markov, Daniel T. Larose
Systemvoraussetzungen
96,99 inkl. MwSt
(CHF 94,75)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book introduces the reader to methods of data mining on the web, including uncovering patterns in web content (classification, clustering, language processing), structure (graphs, hubs, metrics), and usage (modeling, sequence analysis, performance).

Zdravko Markov, PhD, is Associate Professor of Computer Science at Central Connecticut State University. The author of three textbooks, Dr. Markov teaches undergraduate and graduate courses in computer science and artificial intelligence. He is currently a Principal Investigator (PI) in a National Science Foundation-funded project designed to introduce machine learning to undergraduates. Daniel T. Larose, PhD, is Professor of Statistics in the Department of Mathematical Sciences at Central Connecticut State University. He is the author of three data mining books and a forthcoming textbook in undergraduate statistics. He developed and directs CCSU's DataMining@CCSU programs.

PREFACE.

PART I: WEB STRUCTURE MINING.

1 INFORMATION RETRIEVAL AND WEB SEARCH.

Web Challenges.

Web Search Engines.

Topic Directories.

Semantic Web.

Crawling the Web.

Web Basics.

Web Crawlers.

Indexing and Keyword Search.

Document Representation.

Implementation Considerations.

Relevance Ranking.

Advanced Text Search.

Using the HTML Structure in Keyword Search.

Evaluating Search Quality.

Similarity Search.

Cosine Similarity.

Jaccard Similarity.

Document Resemblance.

References.

Exercises.

2 HYPERLINK-BASED RANKING.

Introduction.

Social Networks Analysis.

PageRank.

Authorities and Hubs.

Link-Based Similarity Search.

Enhanced Techniques for Page Ranking.

References.

Exercises.

PART II: WEB CONTENT MINING.

3 CLUSTERING.

Introduction.

Hierarchical Agglomerative Clustering.

k-Means Clustering.

Probabilty-Based Clustering.

Finite Mixture Problem.

Classification Problem.

Clustering Problem.

Collaborative Filtering (Recommender Systems).

References.

Exercises.

4 EVALUATING CLUSTERING.

Approaches to Evaluating Clustering.

Similarity-Based Criterion Functions.

Probabilistic Criterion Functions.

MDL-Based Model and Feature Evaluation.

Minimum Description Length Principle.

MDL-Based Model Evaluation.

Feature Selection.

Classes-to-Clusters Evaluation.

Precision, Recall, and F-Measure.

Entropy.

References.

Exercises.

5 CLASSIFICATION.

General Setting and Evaluation Techniques.

Nearest-Neighbor Algorithm.

Feature Selection.

Naive Bayes Algorithm.

Numerical Approaches.

Relational Learning.

References.

Exercises.

PART III: WEB USAGE MINING.

6 INTRODUCTION TO WEB USAGE MINING.

Definition of Web Usage Mining.

Cross-Industry Standard Process for Data Mining.

Clickstream Analysis.

Web Server Log Files.

Remote Host Field.

Date/Time Field.

HTTP Request Field.

Status Code Field.

Transfer Volume (Bytes) Field.

Common Log Format.

Identification Field.

Authuser Field.

Extended Common Log Format.

Referrer Field.

User Agent Field.

Example of a Web Log Record.

Microsoft IIS Log Format.

Auxiliary Information.

References.

Exercises.

7 PREPROCESSING FOR WEB USAGE MINING.

Need for Preprocessing the Data.

Data Cleaning and Filtering.

Page Extension Exploration and Filtering.

De-Spidering the Web Log File.

User Identification.

Session Identification.

Path Completion.

Directories and the Basket Transformation.

Further Data Preprocessing Steps.

References.

Exercises.

8 EXPLORATORY DATA ANALYSIS FOR WEB USAGE MINING.

Introduction.

Number of Visit Actions.

Session Duration.

Relationship between Visit Actions and Session Duration.

Average Time per Page.

Duration for Individual Pages.

References.

Exercises.

9 MODELING FOR WEB USAGE MINING: CLUSTERING, ASSOCIATION, ANDCLASSIFICATION.

Introduction.

Modeling Methodology.

Definition of Clustering.

The BIRCH Clustering Algorithm.

Affinity Analysis and the A Priori Algorithm.

Discretizing the Numerical Variables: Binning.

Applying the A Priori Algorithm to the CCSU Web Log Data.

Classification and Regression Trees.

The C4.5 Algorithm.

References.

Exercises.

INDEX.

"...it has to be noted that this book is an excellent resource
for conducting Web mining lectures or single units within Data
mining class. The data can be used for small as well as quite
comprehensive business intelligence projects. The book's content is
easy to access; even students with very basic statistical skills
can get the flavor of the intriguing aspects of Web mining."
(Journal of Statistical Software, April 2008)

"...highlight[s] the exciting research related to data
mining the Web...a detailed summary of the current state of the
art." (CHOICE, December 2007)

"I can say I really enjoyed reading this book...a great
educational resource for students and teachers." (Information
Retrieval, 2008)

Erscheint lt. Verlag 20.8.2007
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Netzwerke
Informatik Office Programme Outlook
Mathematik / Informatik Mathematik
Naturwissenschaften Biologie
Schlagworte Bioinformatics & Computational Biology • Bioinformatik u. Computersimulationen in der Biowissenschaften • Biowissenschaften • Computer Science • Database & Data Warehousing Technologies • Data Mining • Data Mining Statistics • Datenbanken u. Data Warehousing • Informatik • Internet • Life Sciences • Statistics • Statistik
ISBN-10 0-470-10808-8 / 0470108088
ISBN-13 978-0-470-10808-6 / 9780470108086
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 5,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich