Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Molecular and Laser Spectroscopy - Zu-Geng Wang, Hui-Rong Xia

Molecular and Laser Spectroscopy

Buch | Softcover
XI, 281 Seiten
2011 | 1. Softcover reprint of the original 1st ed. 1991
Springer Berlin (Verlag)
978-3-642-83720-3 (ISBN)
CHF 74,85 inkl. MwSt
The spectra of molecules containing more than one atom are necessarily of single atoms. They are correspondingly much more complex than those richer, not only in the number of spectral lines, but also in qualitatively different phenomena which do not have any counterpart in single atoms. Historically, molecular spectra have revealed much fundamental phy sics, such as the connection between nuclear spin statistics. They have pro vided models of physical systems which have been useful in quite different areas, such as particle physics. Most especially, molecular spectra are of fundamental importance in understanding chemical bonding. They reveal not only bond lengths but also the strength of the bonding potential between atoms. Moreover, these measurements are obtained for electronic excited states, as well as for the ground state, and for unstable short-lived molecules. In recent years, tunable lasers have provided powerful tools for the measurement and analysis of molecular spectra. Even before that, molecules were being used in lasers, most notably in the carbon dioxide laser, which finds many industrial applications.

Molecular and laser spectroscopists, and research students interested in molecular, chemical, and laser phys- ics will welcome this book, which bridges the gap between molecular spectroscopy and laser spectroscopy. The theoretical concepts introduced in this text are clearly illustrated by numerous examples based on simple molecules.

1. Introduction.- 2. Molecular Energy States.- 2.1 The Molecular-Motion Equation, and the Hamiltonian Operator.- 2.2 Molecular Electronic States.- 2.3 Molecular Vibrational Levels.- 2.4 Molecular Rotational Levels.- 2.5 Molecular Vibration-Rotational Levels.- 2.6 Coupling of Molecular Rotation and Electronic Motion.- 2.7 Perturbations.- 2.8 Quadrupole Hyperfine Structure of Molecules.- 2.9 Magnetic Dipole Hyperfine Structure in Molecules.- 2.10 Isotopic Energy-Level Shifts.- 2.11 Molecular Rydberg States.- 3. Linear Molecular Spectroscopy.- 3.1 Infrared Pure-Rotational Spectra.- 3.2 Infrared Vibrational Spectra.- 3.3 Infrared Vibration-Rotational Spectra.- 3.4 Vibrational Band Systems of Diatomic Molecules.- 3.5 Rotational Spectra of Electronic Bands of Diatomic Molecules.- 3.6 Electric Quadrupole and Magnetic Dipole Hyperfine Spectra of Molecules.- 3.7 The Goals for Experimental Studies of Molecular Spectroscopy.- 3.8 Advances of Molecular Spectroscopy Through Linear Interaction of Molecules with Lasers.- 4. Spectral Characteristics of Molecular Two-Photon Transitions.- 4.1 Classification of Equal-Frequency Molecular Two-Photon Transitions.- 4.2 Excitation Probability of a Two-Photon Transition with One Near-Resonant Enhancing Level.- 4.3 Coarse Structure of Near-Resonantly Enhanced Molecular Two-Photon Absorption Spectra.- 4.4 Fine Structure of Near-Resonantly Enhanced Molecular Two-Photon Transitions.- 4.5 Line Shapes and Higher-Order Corrections for Near-Resonant Two-Photon Transitions in Three-Level Systems.- 4.6 Molecular Two-Photon Transitions Enhanced by Mixing Levels.- 4.7 Semiclassical Theory for a Two-Photon Transition in a Four-Level System.- 4.8 Coherent Effects on the Line Shape of a Near-Resonant Two-Photon Transition in a Four-Level System.- 5. MolecularNonlinear Uncoupling Spectra with Doppler-Free Spectroscopy.- 5.1 Doppler-Free Saturation Spectroscopy and Its Development.- 5.2 Doppler-Free Polarization Spectroscopy and Its Development.- 5.3 Doppler-Free Two-Photon Spectroscopy and Its Development.- 5.4 Superhigh-Resolution Spectroscopy with Separated Fields.- 5.5 Applications of Nonlinear High-Resolution Laser Spectroscopy to Studies of Molecular Spectra.- 6. Molecular Nonlinear Coupling Spectral Effects.- 6.1 Background.- 6.2 Nonlinear Coupled Interaction in Three-Level Systems.- 6.3 Nonlinear Coupled Interaction in Four-Level Systems.- 6.4 Stimulated Diffuse Band Radiation via Various Excitation Processes.- 6.5 Stimulated and Coherent Radiation by Hybrid Excitation in Molecule-Atom Ensembles.- 6.6 Optically Pumped Stimulated Radiation Based on Molecular Electronic Transitions.- 6.7 Lasers Based on Molecular Photodissociation.- 6.8 Optically Pumped Far-Infrared Lasers Based on Pure Rotational Molecular Transitions.- 6.9 Optically Pumped Mid-Infrared Laser Based on Molecular Vibration-Rotational Transitions.- 6.10 Applications of Coherent Transient Spectroscopy in the Measurement of Molecular Parameters.- 7. Simplification and Identification of Molecular Spectra.- 7.1 Laser-Induced Fluorescence.- 7.2 Population Labelling.- 7.3 Polarization Labelling.- 7.4 Two-Step Polarization Labelling.- 7.5 Modulated Polarization Two-Photon Spectroscopy.- 7.6 Molecular Energy Level Information Provided by Selective Simplified Molecular Spectra.- 7.7 Comprehensive Identification of Equal-Frequency Molecular Two-Photon Transitions.- References.

Erscheint lt. Verlag 8.12.2011
Reihe/Serie Springer Series in Chemical Physics
Mitarbeit Stellvertretende Herausgeber: Arthur L. Schawlow
Zusatzinfo XI, 281 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 451 g
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Schlagworte Laser • lasers • Laser Spectroscopy • Laserspektroskopie • Molecular Spectra • Molecule • Molekülphysik • Spectra • spectroscopy
ISBN-10 3-642-83720-4 / 3642837204
ISBN-13 978-3-642-83720-3 / 9783642837203
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

Buch | Softcover (2024)
Wiley-VCH (Verlag)
CHF 109,95