Stem Cells in Marine Organisms (eBook)
XII, 371 Seiten
Springer Netherland (Verlag)
978-90-481-2767-2 (ISBN)
Do real stem cells and stem cell lineages exist in lower organisms? Can stem cells from one organism parasitize the soma and/or the germ line of conspecifics? Can differentiated cells in marine organisms be re-programmed to regenerate tissues, organs and appendages through novel de-differentiation, transdifferentiation, or re-differentiation processes, leading to virtually all three germ layers, including the germline? The positive answers to above questions open a new avenue in stem cell research: the biology of stem cells in marine organisms. It is therefore unfortunate that while the literature on stem cell from terrestrial organisms is rich and expanding at an exponential rate, investigations on marine organisms' stem cells are very limited and scarce.
By presenting theoretical chapters, overview essays and specific research results, this book summarises the knowledge and the hypotheses on stem cells in marine organisms through major phyla and specific model organisms. The study on stem cells from marine invertebrates may shed lights on mechanisms promoting immunity, developmental biology, regeneration and budding processes in marine invertebrates, body maintenance, aging and senescence. It aims in encouraging a larger scientific community to follow and study the novel phenomena of stem cells behaviours as depicted from the few currently studied marine invertebrates.
Do real stem cells and stem cell lineages exist in lower organisms? Can stem cells from one organism parasitize the soma and/or the germ line of conspecifics? Can differentiated cells in marine organisms be re-programmed to regenerate tissues, organs and appendages through novel de-differentiation, transdifferentiation, or re-differentiation processes, leading to virtually all three germ layers, including the germline? The positive answers to above questions open a new avenue in stem cell research: the biology of stem cells in marine organisms. It is therefore unfortunate that while the literature on stem cell from terrestrial organisms is rich and expanding at an exponential rate, investigations on marine organisms' stem cells are very limited and scarce.By presenting theoretical chapters, overview essays and specific research results, this book summarises the knowledge and the hypotheses on stem cells in marine organisms through major phyla and specific model organisms. The study on stem cells from marine invertebrates may shed lights on mechanisms promoting immunity, developmental biology, regeneration and budding processes in marine invertebrates, body maintenance, aging and senescence. It aims in encouraging a larger scientific community to follow and study the novel phenomena of stem cells behaviours as depicted from the few currently studied marine invertebrates.
Preface 5
Contents 7
Contributors 9
1 Stem Cells: Autonomy Interactors that Emerge as Causal Agents and Legitimate Units of Selection 13
1.1 Introduction: Can we Consider Stem Cells as Legitimate Units of Selection? 13
1.2 Cancer Stem Cells Acquiring the Stemness of UOS 15
1.3 The Trait of Transmission Autonomous Somatic Stem Cells 16
1.4 The Trait of Transmission Autonomous Germ and Somatic Stem Cells 17
1.5 Cooperation Between Cell Lineages United we Stand 21
1.6 Stem Cells in Multichimeras 24
1.7 Synthesis 25
References 27
2 Putative Stem Cell Origins in Solitary Tunicates 32
2.1 A General View of Stem Cells from Embryos and Adults 33
2.2 A Cursory View Concerned with the Evolutionof Regeneration of Lost Parts 33
2.3 Is There a Likely Candidate in Evolution that Could be a Source of Putatively Homologous Stem Cells? 34
2.4 Tunicate Immune Responses Aid in a Search for Homologous Immune Cells and Their Putative Equivalents and Stem Cells 34
2.5 Ancient Origins: Early Cells and Their Products 35
2.6 Histoincompatibility is Mediated by Lymphocyte-Like Cells 36
2.7 Long Term Viability in a Marine Model that Suggests Sites of Hemopoiesis and Stem Cells 36
2.8 Changes in Hemocyte Composition of Explants as Revealed by TEM 37
2.9 Hemopoietic Nodules Inside Explants 37
2.10 Implications for Analyzing Hemopoietic Cells in Culture 38
2.11 Tunicate LLC and Thymocytes Possess Lyt-1-2/3 38
2.12 Perspectives on Regeneration and Stem Cells Nearly 50 Years Ago 39
2.13 More on Regeneration, Whole Organisms in Relation to Stem Cells 39
2.14 A Cautionary Note on Possible Fate of Stem Cells 40
References 41
3 Cnidarian Interstitial Cells: The Dawn of Stem Cell Research 44
3.1 Introduction 44
3.2 Historical View 45
3.3 Hydroid Interstitial Stem Cells: Morphology, Cellular Properties, and Gene Expression 48
3.3.1 Staining and Morphology 49
3.3.2 Cell Cycle 50
3.3.3 Ontogeny 51
3.3.4 Gene Expression in Stem Cells and Derivatives 53
3.4 Developmental Potencies of i-cells 54
3.4.1 Studies on Hydra 55
3.4.2 Studies on Hydractinia 58
3.5 Signals Controlling Self-Renewal and Differentiation 60
3.6 Redifferentiation, Transdifferentiation, and Reverse Development in Hydroids 60
3.7 Stem Cells in Other Cnidarians 63
3.8 Perspectives 63
References 64
4 Stem Cells in Aquatic Invertebrates: Common Premises and Emerging Unique Themes 71
4.1 Introduction: Properties of Stem Cells in Adult Organisms 71
4.2 Adult Stem Cells in Tunicates 73
4.2.1 Stem Cells in Asexual Reproduction 73
4.2.2 Stem Cells in Regeneration 75
4.2.3 Stem Cells in Colony Regression 77
4.2.4 Stem Cells in Somatic and Germ Cell Parasitism 77
4.3 Stem Cells in Echinoderms 79
4.3.1 Larval Cloning 79
4.3.2 Regeneration in Larval and Adult Echinoderms 82
4.3.3 The Echinoid Immune Reservoir: Renewal from Stem Cells 85
4.3.4 Stemness Genes in Echinoderms 86
4.4 Stem Cells in Platyhelminthes 88
4.4.1 The Neoblasts 88
4.4.2 Neoblasts in Regeneration 89
4.5 Adult Stem Cells in Coelenterates (Cnidaria) 91
4.5.1 Interstitial Stem Cells 92
4.5.2 Stem Cells in Regeneration 93
4.6 Trans-Differentiation in Aquatic Invertebrates 94
4.7 Summary 97
References 100
5 Stem Cells in Asexual Reproduction of Marine Invertebrates 114
5.1 Introduction 114
5.2 Agametic Cloning and the Role of Stem Cells 115
5.2.1 Why Study Agametic Cloning? 115
5.2.2 Agametic Cloning -- How Does a New Body Form? 117
5.2.3 Constraints for Asexuality and Regeneration 121
5.3 Evolution of Asexual Reproduction 123
5.3.1 The Origin of Asexual Reproduction and Stem Cells 124
5.3.2 Advantages and Disadvantages with Asexual Reproduction 125
5.4 A Systematic Overview Over Metazoans Performing Agametic Cloning 127
5.4.1 Porifera 127
5.4.2 Placozoa 128
5.4.3 Cnidaria 128
5.4.4 Ctenophores 129
5.4.5 Platyhelminthes 129
5.4.6 Nemertea 130
5.4.7 Annelids 131
5.4.8 Sessile Filter Feeding Protostomes 132
5.4.9 Deuterostome Worms 133
5.4.10 Echinodermata 134
5.4.11 Tunicata 135
5.5 Future Perspectives 136
5.5.1 Summary 137
5.5.2 Experimental Strategies 137
References 139
6 Neuroimmune Chemical Messengers and Their Conservation During Evolution 147
6.1 Introduction 147
6.1.1 The Model System 149
6.1.2 Molluscan Stem Cells 149
6.2 Invertebrate Opioid Precursors 150
6.2.1 Proenkephalin 151
6.2.2 Prodynorphin 152
6.2.3 POMC 153
6.3 Opioid Processing 154
6.4 Corticotropin-Releasing Hormone (CRH) 155
6.5 Monoamines 156
6.6 Endogenous Morphine 156
6.6.1 0 3 Binding 156
6.6.2 Nitric Oxide (NO) and Morphine 157
6.6.3 Cloning of 0 3 158
6.6.4 Endogenous Morphine 158
6.7 Cytokines 159
6.8 Specific Regulatory Processes 160
6.9 The Hemocyte as Immune-Mobile Brain 161
6.10 Human Stem Cells with Invertebrate Promise 161
6.11 Conclusion 162
References 163
7 Regenerating Echinoderms: A Promise to Understand Stem Cells Potential 173
7.1 Introduction 173
7.2 Fundamental Aspects 174
7.3 Regeneration in Echinoderms 175
7.3.1 Experimental Models 177
7.3.2 Crinoids 178
7.3.2.1 The Arm Experimental Model 179
7.3.2.2 The Visceral Experimental Model 181
7.3.2.3 Larval Regeneration 181
7.3.3 Experimental Approaches 181
7.3.3.1 In vivo Experiments 182
7.3.3.2 In vitro Experiments 182
7.3.4 Regeneration-Competent Cells 182
7.3.4.1 Migratory Cells 184
7.3.4.2 Dedifferentiated Cells 186
7.4 Cellular Mechanisms of Regeneration 187
7.5 Molecules, Genes, Expression Patterns 188
7.6 Concluding Remarks and Future Perspectives 189
References 191
8 Secondary Mesenchyme Cells as Potential Stem Cells of the Sea Urchin Embryo 195
8.1 Introduction 195
8.2 A Brief Overview of the Sea Urchin Development 197
8.3 Sea Urchin Embryo Mesoderm 198
8.3.1 Primary Mesenchyme Cells 198
8.3.2 Secondary Mesenchyme Cells 200
8.3.2.1 SMC Lineage Specification 200
8.3.2.2 SMCs Differentiation 201
8.3.2.3 Pigment Cells 202
8.3.2.4 Blastocoelar Cells 203
8.3.2.5 Muscle Cells 204
8.3.2.6 Coelomic Pouches Cells 205
8.3.2.7 Other SMC-derived Cells 205
8.3.2.8 SMC-derived Skeletogenic Cells and the Transfating Response 206
8.4 SMCs as Embryonic Stem Cells 209
8.5 Concluding Remarks 213
References 215
9 Cell Dynamics in Early Embryogenesis and Pluripotent Embryonic Cell Lines: From Sea Urchin to Mammals 222
9.1 Introduction 222
9.2 Cell Fate Determination in Embryo, ESC In Situ 223
9.2.1 Stem Cell as an Evolutionary Unit 223
9.2.2 Molecules Regulating Germ Layer Specification and Axial Patterning in Embryos 224
9.3 ESCs in Culture 225
9.3.1 Isolation of Pluripotent ESC Lines 226
9.3.2 ESC Differentiation 227
9.4 Molecular Mechanisms Regulating Pluripotency 228
9.4.1 Signalling Pathways Required to ESC Self-Renewal 228
9.4.2 Cell Cycle 229
9.4.2.1 Cell Cycle Features During Early Embryogenesis and in ES Cells in Culture 229
9.4.2.2 Cell Cycle Regulators 230
9.4.2.3 Checkpoint Responses 234
9.4.3 Regulation of Replication in ES Cells and Embryos 236
9.4.4 Transcription Factors Regulatory Networks in ESCs and Early Embryo Development 237
9.4.5 Chromatin Characteristics in Early Embryogenesis and ESC Lines 239
9.4.5.1 From Gametes to the Totipotent Zygote 239
9.4.5.2 From the Totipotent Zygote to the Early Embryo 240
9.4.5.3 ESC Lines 242
9.5 Concluding Remarks 242
References 243
10 Regeneration in Hemichordates and Echinoderms 252
10.1 Introduction 252
10.2 Regeneration and Asexual Reproduction in Echinoderms 254
10.3 Developmental Genes Implicated in Echinoderm Regeneration 255
10.4 Sexual and Asexual Reproduction in Hemichordates 257
10.5 Regeneration in Solitary Enteropneust Worms 260
10.6 Future Experiments and Prospectus 264
References 267
11 Stem Cells in Sexual and Asexual Reproduction of Botryllus schlosseri (Ascidiacea, Tunicata): An Overview 273
11.1 Introduction 273
11.2 The B. schlosseri Colony and the Colonial Blastogenetic Cycle 275
11.3 Stem Cells in Asexual Development 276
11.3.1 Palleal Budding 276
11.3.2 Vascular Budding 278
11.4 Palleal Budding, Vascular Budding and the Double-Vesicle Stage 278
11.5 Pluripotential of Nervous System Precursors in Embryo and Bud 280
11.6 Blood Cell Renewal at Take-Over 281
11.7 Circulating Somatic and Germ Stem Cells 282
11.8 Concluding Remarks 283
11.8.1 Somatic Stem Cells can Give Rise to New Zooids 283
11.8.2 Germ Stem Cells are Subpopulations of Circulating Cells 284
11.8.3 Pluripotent Stem Cells Gradually Evolve into Lineage-Specific Stem Cells 284
References 284
12 Stem Cells, Chimerism and Tolerance: Lessons from Mammals and Ascidians 287
12.1 Chimerism in Mammals 288
12.1.1 Fetal/Maternal Micro Chimerism 288
12.1.2 Natural Chimerism in Twins 289
12.1.3 Natural Tetragametic Chimerism 290
12.1.4 Callitrichid Primates, Living with Chimerism 291
12.1.5 Bovine Fraternal Twins, the Discovery of Tolerance 291
12.1.6 The Association Between Chimerism and Transplantation Tolerance 292
12.2 Chimerism in Ascidians 295
12.2.1 Natural Long-Term Chimerism in Ascidians 295
12.2.2 Genetically Controlled Allorecognition System in Colonial Organisms Restrict the Development of Chimeras to Kin 295
12.2.3 Stem Cell Parasitism in the Chimera Entity 299
12.2.4 Induction of Tolerance and Intolerance by Chimerism 300
12.3 Chimerism Insights from Mammals and Ascidians 301
References 303
13 Effect of Bacterial Infection on Stem Cell Pattern in Porifera 315
13.1 Introduction 315
13.2 Basis of Metazoan Pattern Formation: The Stem Cell System in Sponges 318
13.2.1 Marker Genes 321
13.2.2 Expression Pattern of Archaeocytes (Stem Cells): ''Reproductive'' Cells 324
13.2.3 Expression Pattern of Archaeocytes (Stem Cells): Sclerocyte Lineage [Skeletal Cells] 325
13.2.4 Expression Pattern of Archaeocytes (Stem Cells): Pinacocyte Lineage [Epithelial Layer] 325
13.2.5 Expression Pattern of Archaeocytes (Stem Cells): Myocyte Lineage 327
13.3 Bacterial Infection 327
13.3.1 Activation of p38 Kinase 329
13.3.2 ELISA Assay (Method) 329
13.3.2.1 Preparation of Sponge Total Protein Extract 329
13.3.2.2 Determination of the Phosphorylation Level of p38 by Enzyme-Linked Immunosorbent Assay (ELISA) 329
13.3.3 Real-Time Reverse Transcription-PCR (Method) 331
13.3.3.1 Total RNA Extraction 331
13.3.3.2 Primer Design 332
13.3.3.3 qPCR 332
13.4 Assessment of the Stem Cell Level in Primmorphs 332
13.4.1 Primmorph Formation 333
13.4.2 Expression Pattern in Primmorphs for Noggin, Thymidine Kinase, Integrin and Perforin in Dependence on Adhesion and LPS Treatment 333
13.4.2.1 Expression in Non-treated Primmorphs 334
13.4.2.2 Expression Levels in Attached Primmorphs 334
13.4.2.3 Level of Expression in LPS-Treated Primmorphs 334
13.5 Effect of LPS Treatment on the Number of Stem Cells 335
13.6 Concluding Remarks 335
References 338
14 Defence Mechanisms and Stem Cells in Holothuria polii and Sipunculus nudus 343
14.1 Invertebrate Immunity 343
14.2 Holothuria polii 344
14.2.1 Coelomocytes in Holothuria polii 345
14.2.2 Cellular Aspects of the Immune Response of Holothuria polii 347
14.2.3 The Stone Canal 349
14.2.4 Polian Vesicles 350
14.2.5 Periesophageal Ring 351
14.3 The Healing of Wounds in Holothuria polii 353
14.4 Sipunculus Nudus 354
14.4.1 The Coelomatic Fluid of Sipunculus nudus 355
14.5 The Healing of Wounds in Sipunculus nudus 359
14.6 The Defence Mechanisms of Vertebrates and Invertebrates 362
14.7 Stem Cells 365
References 367
Index 374
Erscheint lt. Verlag | 3.10.2009 |
---|---|
Zusatzinfo | XII, 371 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie |
Naturwissenschaften ► Biologie ► Limnologie / Meeresbiologie | |
Naturwissenschaften ► Biologie ► Ökologie / Naturschutz | |
Naturwissenschaften ► Biologie ► Zoologie | |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Naturwissenschaften ► Geowissenschaften ► Hydrologie / Ozeanografie | |
Technik | |
Schlagworte | immunity • Invertebrate • Invertebrates • marine and freshwater sciences • Marine Biology • marine invertebrates • Model invertebrates • Regeneration • Regenerative Biology • Stem Cells • Vertebrate |
ISBN-10 | 90-481-2767-X / 904812767X |
ISBN-13 | 978-90-481-2767-2 / 9789048127672 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich