Multinuclear NMR
Kluwer Academic / Plenum Publishers (Verlag)
978-0-306-42153-2 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
For reasonably comprehensive coverage in a single volume we have sum- marized the information in tables and charts, and included all leading references.
1 Introduction.- 2 The Parameters of NMR Spectroscopy.- 1. Nuclear Properties of the Elements and the Resonance Condition.- 2. The Nucleus in a Chemical Environment.- 2.1. The Chemical Shift and the Shielding Tensor.- 2.2. Dipolar (D) Coupling.- 2.3. Indirect Spin-Spin (J) Coupling.- 2.4. Electric Quadrupole Coupling.- 2.5. Relaxation.- 3. The Larmor Precession and the Bloch Equations.- 4. The Fourier Transform Technique.- 5. Multipulse and Multiple Resonance Techniques.- 5.1. Double Resonance Experiments.- 5.2. Techniques for Signal Enhancement.- 5.3. Techniques in Aid of Spectral Analysis and Assignment.- 6. Oriented Systems.- 6.1. High Resolution NMR Techniques for Solids.- 6.2. Experimental Determination of Tensor Components of ?, J, D, and q.- 7. The NMR Time Scale.- 8. Physical Effects on the NMR Parameters.- 8.1. Medium and Temperature Effects.- 8.2. Isotope Effects.- 8.3. Effects of Paramagnetic Substances.- References.- 3 The Chemical Shift.- 1. Nuclear Magnetic Shielding and the Chemical Shift.- 1.1 The Absolute Shielding Tensor.- 1.2. The Diamagnetic and Paramagnetic Contributions to Shielding.- 1.3. The Relationship between ?p and the Nuclear Spin-Rotation Constant.- 1.4. Molecular Symmetry and Nuclear Magnetic Shielding.- 1.5. Absolute Shielding Scales.- 1.6. Experimental Methods of Determining the Shielding Anisotropy.- 2. Theoretical Description.- 2.1. Computational Schemes.- 2.2. Relativistic Effects.- 2.3. Approximate Calculations and Models.- 3. Patterns of Chemical Shifts.- 3.1. Chemical Shift Ranges of the Nuclei.- 3.2. Scaling of Chemical Shifts.- 3.3. General Factors in the Shielding of Main-Group and Transition Metal Nuclei.- 3.4. Dependence of Nuclear Shielding on Charge Density, Oxidation State, and Substituent Electronegativity.- 3.5. Correlations with Electronic Excitation and Ionization Energies.- 3.6. Substituent Effects.- 4. Correlations of Chemical Shifts with Other Molecular Properties.- 4.1. Nuclear Quadrupole Coupling Constants.- 4.2. Van Vleck Paramagnetism, and the Electronic g Tensor.- 4.3. Spin-Spin Coupling Constants and Relaxation Times.- 4.4. Bond Properties.- 5. Shifts in Paramagnetic Systems.- 6. Effects of Intermolecular Interactions and Intramolecular Dynamics.- 6.1. Medium Effects.- 6.2. Rovibrational Averaging and Isotope Effects.- 6.3. Dynamic Processes: Fluxional, Conformational and Exchange Equilibria.- References.- 4 Spin-Spin Coupling.- 1. General Considerations.- 1.1. Mechanisms of Spin-Spin Coupling.- 1.2. Anisotropy of the Spin-Spin Coupling.- 1.3. Methods of Determining Signs of Coupling Constants.- 2. Empirical Patterns of Coupling Constants.- 2.1. Signs and General Magnitudes of nK:(XY).- 2.2. Structural Factors Affecting 1K.- 2.3. Structural Factors Affecting the Sign and Magnitude of 2K.- 2.4. Structural Factors Affecting the Sign and Magnitude of 3K.- 3. Effects of Intermolecular Interactions and Intramolecular Dynamics on Spin-Spin Coupling.- 3.1. Averaging via Rotameric Equilibria and Intramolecular Rearrangement.- 3.2. Isotope Effects.- 3.3. Chemical Exchange and Medium Effects.- 4. Theoretical Description.- 4.1. Computational Schemes.- 4.2. Relative Importance of the Fermi Contact, Spin Dipolar and Orbital Terms.- 4.3. Relativistic Effects.- 4.4. Approximate Calculations and Models.- References.- 5 Relaxation and Related Time-Dependent Processes.- 1. Importance.- 2. Definitions.- 2.1. Macroscopic Definition of T1 and T2: Bloch Equations.- 2.2. Microscopic Interpretation.- 2.3. Nuclear Overhauser Enhancement.- 2.4. Relaxation in the Rotating Frame: T1?.- 3. Microscopic Theory.- 3.1. Spin-Lattice Relaxation.- 3.2. Spin-Spin Relaxation.- 3.3. Dependence of Spectral Density upon Frequency.- 3.4. The Static Part V.- 3.5. More Complete Treatments.- 4. Specific Mechanisms.- 4.1. Dipole-Dipole Relaxation.- 4.2. Scalar Interactions.- 4.3. Shielding Anisotropy.- 4.4. Spin-Rotation Interactions.- 4.5. Electric Quadrupole Interactions.- 5. Methods of Measurement.- 5.1. T1 Measurements.- 5.2. Nuclear Overhauser Enhancement Measurements.- 5.3. T2 Measurement, and Other Uses of Spin Echoes.- 6. Line Broadening Due to Chemical Exchange.- 6.1. T1 in the Presence of Chemical Exchange.- 7. Paramagnetic Interactions.- 7.1. Kinetics.- 7.2. Paramagnetic Contributions to T1 and T2.- 8. Two-Dimensional NMR.- 8.1. Shift-Correlation Experiments.- 8.2. J-Resolved Two-Dimensional Spectroscopy.- References.- 6 Hydrogen and Its Isotopes: Hydrogen, Deuterium, and Tritium.- 1. Introduction.- 2. Experimental Techniques.- 3. Hydrogen or the Proton, or Protium.- 3.1. Strong or Weak Hydrogen Bonds.- 3.2. Ionic Solvation.- 3.3. Chemical Shifts of Adducts.- 3.4. Hydrogen on Carbon.- 3.5. Hydride Protons.- 3.6. Dynamic Processes.- 4. Deuterium.- 4.1. Deuterium NMR in Isotropic Liquids.- 4.2. Deuterium NMR of Liquid Crystalline Phases.- 4.3. Deuterium NMR in Solids and Heterogeneous Systems.- 5. Tritium.- References.- 7 The Alkali and Alkaline Earth Metals: Lithium, Sodium, Potassium, Rubidium, Cesium, Beryllium, Magnesium, Calcium, Strontium, and Barium.- 1. Introduction to Groups I and II.- 2. Experimental Techniques.- 3. Aqueous Solutions of Simple Salts.- 3.1. Nuclear Relaxation.- 3.2. Chemical Shifts.- 4. Mixed and Nonaqueous Solutions of Simple Salts.- 4.1. Nuclear Relaxation.- 4.2. Chemical Shifts.- 5. Complexes Between the Cations and Various Types of Ligands.- 5.1. Complexes with Low-Molecular-Weight Compounds.- 5.2. Complexes with Synthetic Polymeric Ligands.- 5.3. Complexes with Biopolymers.- 5.4. Cations in Liquid Crystals.- 6. Group I and II Metal Organic Compounds.- 6.1. Lithium Organic Compounds.- 6.2. Beryllium Covalent Compounds.- References.- 8 Boron.- 1. Nuclear Properties and General Considerations.- 2. Trigonal and Tetrahedral Compounds.- 2.1. Chemical Shifts.- 2.2. Coupling Constants.- 2.3. Relaxation Studies.- 3. Polyhedral Boron-Containing Species.- 3.1. General Considerations.- 3.2. Boron Chemical Shifts.- 3.3. Coupling Constants.- 3.4. Relaxation Times.- 3.5. Polyhedral Species-Nuclei Other than Boron.- 3.6. Fluxionality.- References.- 9 Aluminum, Gallium, Indium, and Thallium.- 1. The Nuclear Properties of Al, Ga, and In, the Quadrupolar Nuclei.- 2. Aluminum.- 2.1. Operational Techniques.- 2.2. Aluminum-27 NMR Parameters.- 2.3. Some Observations on the Parameters.- 3. Gallium.- 3.1. Operational Techniques.- 3.2. Gallium-69 and Gallium-71 NMR Parameters.- 4. Indium.- 4.1. Indium-115 NMR Parameters.- 5. Thallium.- References.- 10 Carbon.- 11 Silicon, Germanium, Tin, and Lead.- 1. Introduction.- 2. Experimental Aspects.- 3. Chemical Shifts.- 3.1. Isotope Effects.- 3.2. Solvent and Temperature Effects.- 3.3. Chemical Shift Patterns.- 3.4. Factors Influencing Shielding.- 3.5. Chemical Shifts in Specific Classes of Compound.- 4. Coupling Constants.- 4.1. One-Bond Couplings.- 4.2. Two-Bond Couplings.- 4.3. Three-Bond Couplings.- 5. Relaxation Behavior.- 6. Miscellaneous and Solid State Work.- References.- 12 Nitrogen.- 1. Nitrogen NMR Spectroscopy.- 1.1. Nitrogen Referencing.- 1.2. Medium Effects.- 1.3. Solid State Measurements in High Resolution.- 1.4. Isotope Effects and Tracer Studies.- 2. 15N NMR Spectroscopy.- 2.1. 15N Relaxation and NOE Factors.- 2.2. Sensitivity Enhancement.- 3. 14N NMR Spectroscopy.- 3.1. 14N Quadrupolar Relaxation.- 4. Patterns of Nitrogen Shielding.- 4.1. Nitrogen NMR Criteria of Structure.- 4.2. Inorganic Azines and Azenes.- 4.3. Coordination Shifts.- 5. Nitrogen Spin-Spin Coupling.- 6. Dynamics.- 7. Biomolecules.- References.- 13 Phosphorus to Bismuth.- 1. Phosphorus-31.- 1.1. Introduction.- 1.2. Spin Lattice Relaxation (T1).- 1.3. Chemical Shifts.- 1.4. Coupling Constants.- 2. Arsenic-75, Antimony-121,123 and Bismuth-209.- References.- 14 Oxygen.- 1. Introduction.- 2. Experimental Aspects.- 3. Chemical Shifts.- 4. Spin Coupling.- 5. Relaxation Behavior.- 6. Applications.- 7. The Solid State.- References.- 15 Sulfur, Selenium, and Tellurium.- 1. Introduction.- 2. Sulfur.- 3. Selenium and Tellurium.- 3.1. Chemical Shifts.- 3.2. Coupling Constants.- 3.3. Relaxation Behavior.- 3.4. Applications.- References.- 16 Fluorine.- 1. 19F NMR Measurements.- 2. 19F Chemical Shifts.- 2.1. Absolute Shielding Scale.- 2.2. Empirical Patterns of 19F Nuclear Shielding.- 2.3. Anisotropy of the 19F Shielding Tensor.- 3. Spin-Spin Coupling Involving 19F.- 4. 19F Relaxation.- References.- 17 The Quadrupolar Halides: Chlorine, Bromine and Iodine.- 1. Introduction.- 2. Experimental Techniques.- 3. NMR Parameters.- 3.1. Covalent Compounds.- 3.2. Ionic Solutions.- References.- 18 The Noble Gases.- 1. Introduction.- 2. 129Xe NMR Studies of Bonding and Structure of Xenon Compounds.- 2.1. 129Xe Chemical Shifts.- 2.2. Spin-Spin Coupling to Xenon.- 3. Probing Nonspecific Intermolecular Interactions with Noble Gas Nuclei.- 3.1. Medium Shifts.- 3.2. Relaxation Times.- References.- 19 Early Transition Metals, Lanthanides and Actinides.- 1. Introduction.- 2. Group IIIb.- 2.1. Scandium.- 2.2. Yttrium.- 2.3. Lanthanum.- 2.4. The Lanthanides.- 2.5. Actinium and the Actinides.- 3. Group IVb: Titanium, Zirconium, and Hafnium.- 4. Group Vb.- 4.1. Vanadium.- 4.2. Niobium.- 4.3. Tantalum.- 5. Group VIb.- 5.1. Chromium.- 5.2. Molybdenum.- 5.3. Tungsten.- 6. Group VIIb.- 6.1. Manganese.- 6.2. Technetium.- 6.3. Rhenium.- References.- 20 Group VIII Transition Metals.- 1. Introduction.- 2. Observation.- 2.1. Relaxation Behavior.- 2.2. Methods of Observation.- 3. Chemical Shifts.- 3.1. Evaluation of Chemical Shifts.- 3.2. Results.- 3.3. Theoretical Approaches.- 3.4. Empirical Correlations.- 3.5. Effects of the Molecular Environment and Isotopes.- 4. Spin-Spin Coupling.- 4.1. Sign Determinations.- References.- 21 Post-Transition Metals, Copper to Mercury.- 1. Introduction.- 2. Observation.- 2.1. 63Cu and 65Cu.- 2.2. 67Zn.- 2.3. 107Ag and 109Ag.- 2.4. 111Cd and 113Cd.- 2.5. 197Au.- 2.6. 199Hg and 201Hg.- 3. Chemical Shifts.- 3.1. Results.- 3.2. Discussion.- 4. Spin-Spin Coupling.- 4.1. Sign Determinations.- References.- 22 NMR Spectroscopy in Bioinorganic Chemistry.- 1. Introduction.- 2. Some Examples of Biological Applications: Isotope Shifts in 31P NMR.- 3. Sodium Transport Through Membranes Using 23Na Resonance.- 4. Active Site Interactions in Fluorine-Labeled ?-Chymotrypsin.- 5. 113Cd Studies of Alkaline Phosphatase.- 6. 31P NMR in Living Tissue.- 7. Ion Binding to Cytochrome c Studied by Nuclear Magnetic Quadrupole Relaxation.- 8. Deuterium Label Studies of Membranes.- 9. Direct Determination of Correlation Times in Enzyme Complexes Involving Monovalent Cations and Paramagnetic Centers.- Index of Reviews.- References.- 23 Biomedical NMR.- 1. Biomedical NMR.- 2. NMR Imaging.- 3. Localized NMR Spectroscopy.- 4. Further Applications.- References.- Symbols and Abbreviations.- SI Units and Fundamental Constants.- Appendix: NMR Properties of the Elements.
Erscheint lt. Verlag | 31.8.1987 |
---|---|
Zusatzinfo | biography |
Verlagsort | Dordrecht |
Sprache | englisch |
Gewicht | 1300 g |
Einbandart | gebunden |
Themenwelt | Naturwissenschaften ► Biologie ► Biochemie |
ISBN-10 | 0-306-42153-4 / 0306421534 |
ISBN-13 | 978-0-306-42153-2 / 9780306421532 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich