Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Calculus of Variations II - Mariano Giaquinta, Stefan Hildebrandt

Calculus of Variations II

Buch | Softcover
XXIX, 655 Seiten
2010 | 1. Softcover reprint of hardcover 1st ed. 1996
Springer Berlin (Verlag)
978-3-642-08192-7 (ISBN)
CHF 194,70 inkl. MwSt
  • Versand in 10-15 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This book describes the classical aspects of the variational calculus which are of interest to analysts, geometers and physicists alike. Volume 1 deals with the for mal apparatus of the variational calculus and with nonparametric field theory, whereas Volume 2 treats parametric variational problems as weIl as Hamilton Jacobi theory and the classical theory of partial differential equations of first order. In a subsequent treatise we shall describe developments arising from Hilbert's 19th and 20th problems, especially direct methods and regularity theory. Of the classical variational calculus we have particularly emphasized the often neglected theory of inner variations, i. e. of variations of the independent variables, which is a source of useful information such as monotonicity for mulas, conformality relations and conservation laws. The combined variation of dependent and independent variables leads to the general conservation laws of Emmy Noether, an important tool in exploitingsymmetries. Other parts of this volume deal with Legendre-Jacobi theory and with field theories. In particular we give a detailed presentation of one-dimensional field theory for non para metric and parametric integrals and its relations to Hamilton-Jacobi theory, geometrieal optics and point mechanics. Moreover we discuss various ways of exploiting the notion of convexity in the calculus of variations, and field theory is certainly the most subtle method to make use of convexity. We also stress the usefulness of the concept of a null Lagrangian which plays an important role in several instances.

CALCULUS OF VARIATIONS I - The Lagrangian Formalism: Part I: The First Variation and Necessary Conditions: The First Variation; Variational Problems with Subsidiary Conditions; General Variational Formulas.- Part II: The Second Variation and Sufficient Conditions; Second Variation, Excess Function, Convexity; Weak Minimizers and Jacobi Theory; Weierstrass Field Theory for One-dimensional Integrals and Strong Minimizers. CALCULUS OF VARIATIONS II - The Hamiltonian Formalism: Part III: Canonical Formalism and Hamilton-Jacobi Theory; Legendre Transformation, Hamiltonian Systems, Convexity, Field Theories; Parametric Variational Integrals.- Part IV: Hamilton-Jacobi Theory and Canonical Transformations: Hamilton-Jacobi Theory and Canonical Transformations; Partial Differential Equations of First Order and Contact Transformations.

Erscheint lt. Verlag 5.12.2010
Reihe/Serie Grundlehren der mathematischen Wissenschaften
Zusatzinfo XXIX, 655 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 1017 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie
Schlagworte Calculus of Variations • Convexity • differential equation • Hamiltonian Formalism • Lagrangian Formalism
ISBN-10 3-642-08192-4 / 3642081924
ISBN-13 978-3-642-08192-7 / 9783642081927
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich