Nanomaterials in Clinical Therapeutics
Wiley-Scrivener (Verlag)
978-1-119-85723-5 (ISBN)
Nanotechnology-based applications is a rapidly growing field encompassing a diverse range of disciplines that impact our daily lives. Nanotechnology is being used to carry out large-scale reactions in practically every field of biotechnology and healthcare. The incredible progress being made in these applications is particularly true for the healthcare sector, where they are used in cancer detection and treatment, medical implants, tissue engineering, and so forth. Expansions in this discipline are expected to continue in the future, resulting in the creation of a variety of life-saving medical technology and treatment procedures.
The primary goal of this book is to disseminate information on nanotechnology’s applications in the biological sciences. A broad array of nanotechnological approaches utilized in different biological applications are highlighted in the book’s 17 chapters, including the employment of nanotechnology in drug delivery. The first three chapters provide an overview of the history and principles of nanotechnology. The synthesis, characterization, and applications of nanomaterials are covered in the next 10 chapters. The last four chapters discuss the use of nanomaterials in clinical research.
Audience
The book will be useful for researchers and graduate students in the many areas of science such as biomedicine, environmental biotechnology, bioprocess engineering, renewable energy, chemical engineering, nanotechnology, biotechnology, microbiology, etc.
Mainak Mukhopadhyay, PhD, is an assistant professor in the Department of Biotechnology, JIS University, Kolkata, India. He obtained his PhD from the Indian Institute of Technology in Kharagpur, India in 2014. His research interests include enzymology, nanobiotechnology, and biomass conversion technology. He was awarded Petrotech Research Fellowship in 2008. In 2016 he was awarded the Early Career Research Award from DST-SERB. He has co-authored 15 peer-reviewed papers and three review papers, edited one book and 15 book chapters, and filed three patents. Arindam Kuila is an assistant professor at the Department of Bioscience & Biotechnology, Banasthali Vidyapith, Rajasthan, India. Previously, he worked as a research associate at Hindustan Petroleum Green R&D Centre, Bangalore, India. He gained his PhD from the Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, India in 2013 in the area of lignocellulosic biofuel production. He has co-authored 18 peer-reviewed research papers and seven review papers, edited four books and eight book chapters, and filed five patents.
Preface xix
Part 1: History and Basic Principles of Nanotechnology 1
1 Introduction to Nanotechnology 3
Rekha Sharma, Kritika S. Sharma and Dinesh Kumar
1.1 Introduction 4
1.2 Nanoscale Materials: Importance 5
1.3 Nanotechnology: Historical Advances 8
1.4 Nanofabrication Methods in Nanotechnology 9
1.4.1 Top-Down Method 10
1.4.2 Bottom-Up Method 11
1.5 Carbon Nanoallotropes 13
1.5.1 Fullerene 13
1.5.2 Carbon Nanotubes 14
1.5.3 Graphene 15
1.6 Classification of the Nanomaterials 16
1.6.1 Based on Dimensions 16
1.6.2 Based on the Structural Configuration 17
1.7 Applications of Nanotechnology 18
1.7.1 Chip-Based Plasmonic Sensors 18
1.7.2 Nanoparticle-Based Colorimetric Sensors 20
1.7.3 Colloidal Nanoparticle-Based Plasmonic Sensors 21
1.8 Conclusions and Future Perspectives 23
Acknowledgment 23
References 24
2 Functional Principal of Nanotechnology in Clinical Research 33
Kalyanee Bera, Biva Ghosh and Mainak Mukhopadhyay
2.1 Introduction 34
2.2 Nanoparticles 36
2.3 Carbon-Based Nanoparticles 37
2.4 Metal Nanoparticles 37
2.4.1 Gold Nanoparticles 38
2.4.2 Silver Nanoparticles 39
2.4.3 Zinc Nanoparticles 39
2.5 Magnetic Nanoparticles 40
2.6 Ceramic Nanoparticles 41
2.7 Lipid Nanoparticles 41
2.8 Polymeric Nanoparticles (Nanoparticles Made of Polymers) 42
2.8.1 Synthetic 43
2.8.2 Natural 43
2.9 Hydrogel 44
2.10 Nanofibers 45
2.11 Nanocomposites 45
2.12 Nanotechnologies for Clinical Laboratory Diagnosis 46
2.12.1 Nanotechnology-Based Biochips and Microarrays 46
2.12.2 Protein Microarrays/Chips 47
2.12.3 Nanobiosensors 48
2.12.4 PEBBLE Nanosensors (Probes Encapsulated by Biologically Localized Embedding) 48
2.12.5 Quantum Dots 48
2.12.6 Fluorescence Microscopy for Chromosomal Changes 49
2.12.7 Nanobarcodes 49
2.12.8 Protein Biobarcode Assay 50
2.12.9 Cantilever Arrays 50
2.12.10 DNA-Protein and Nanoparticles Conjugates 51
2.12.11 Resonance Light Scattering Technology 52
2.12.12 Method of Colorimetric DNA Detection 52
2.12.13 Upcoming Phosphor Technology Based on Nanoparticles 53
2.13 Clinical Uses of Nanotechnology 53
2.13.1 Application of Nanocrystals in Immunohistochemistry 54
2.13.2 Detection of Illness Biomarkers 54
2.13.3 Disease Gene Detection 54
2.13.4 Detection of Microorganisms 55
2.13.5 Dental Nanotechnology 55
2.14 Nanofilm Applications 56
2.15 Nanomedicine Implementation 57
2.16 Future Prospects 58
2.17 Conclusion 58
References 59
3 Application of Nanotechnology in Clinical Research: Present and Future Prospects 75
Mansi Sharma, Pragati Chauhan, Rekha Sharma and Dinesh Kumar
3.1 Introduction 76
3.2 Scope of Nanotechnology in Clinical Research 77
3.3 Classification 78
3.3.1 Nanomaterials 78
3.3.1.1 Nanocrystal 80
3.3.1.2 Nanostructures 81
3.3.2 Nanodevices 89
3.4 Applications of Nanotechnology 91
3.4.1 Drug Delivery 93
3.4.2 Cancer Treatment 93
3.4.3 Gene Therapy 95
3.4.4 Tissue Engineering 95
3.4.5 Wound Treatment 96
3.4.6 Visualization 96
3.4.7 Tuberculosis Treatment 97
3.4.8 In Ophthalmology 97
3.4.9 Neurodegenerative Treatment 97
3.4.10 Diabetes Treatment 98
3.4.11 Protein Detection 98
3.4.12 In Surgery 99
3.4.13 Antibiotic Resistance 99
3.4.14 Immune Response 99
3.4.15 Operative Dentistry 101
3.4.16 Diagnostic Techniques 102
3.5 Conclusion 103
Acknowledgment 103
References 104
Part 2: Synthesis, Characterization and Applications of Nanomaterials 115
4 Fermentation Process Versus Nanotechnology 117
Nabya Nehal, Anushka Mathur, Modhumita Ganguli and Priyanka Singh
4.1 Overview of Microbial Technology 118
4.1.1 Biological Methodologies for Extraction and Purification of Biomolecules 118
4.1.2 Recent Advancements in Bioprocess Technology 119
4.1.2.1 Genetic Engineering and Random Mutagenesis 120
4.1.2.2 Immobilization Techniques 120
4.2 Nanotechnology 123
4.2.1 Classification of Nanostructures 125
4.2.1.1 Organic Nanocarriers 126
4.2.1.2 Inorganic Nanocarriers 127
4.2.2 Self-Assembly 128
4.2.3 Methodology for Synthesis of Nanoparticles 129
4.3 Biogenic Sources 131
4.3.1 From Bacteria 131
4.3.2 Filamentous Fungi 133
4.3.3 Plants 135
4.3.4 Microalgae 135
4.4 The Extent of Biogenic Nanoparticles in Industrial Sectors 139
4.4.1 Biomedical and Pharmaceutical Sectors 143
4.4.2 Environmental Remediation 146
4.4.3 Food Sectors 148
References 158
5 Application of Geno-Sensors and Nanoparticles in Gene Therapy: A New Avenue for Gene Delivery 177
Sharmili Roy, Monalisha Ghosh Dastidar, Vivek Sharma, Beom Soo Kim and Rajiv Chandra Rajak
5.1 Introduction 178
5.2 Inorganic Nanomaterials and Their Application in Gene Delivery 179
5.2.1 Magnetic Nanoparticles 180
5.2.2 Quantum Dots 181
5.2.3 Gold, Silver, and Platinum Nanoparticles 182
5.2.4 Graphene-Based Nanoparticles 186
5.3 Carbon-Based Nanotubes and Their Applications in Gene Delivery 187
5.4 Polymer-Based Nanomaterials and Their Applications in Gene Delivery 188
5.5 Protein, Lipid, and Peptide-Based Nanomaterials and Their Advantages for Gene Delivery 192
5.6 Conclusion: Challenges and Outlook 194
References 196
6 Flexuous Plant Viruses as Nanomaterials for Biomedical Applications 205
De Swarnalok
6.1 Introduction 205
6.2 Plant Virus Particle Structures 207
6.2.1 Viruses With Icosahedral Symmetry 207
6.2.2 Viruses with Helical Symmetry 208
6.2.2.1 Rigid Rod-Like Viruses 208
6.2.2.2 Flexuous Filament-Like Viruses 209
6.3 Virus Nanoparticles and Virus-Like Particles 209
6.3.1 VNPs 209
6.3.2 VLPs 210
6.4 Production Platforms for VNPs and VLPs 210
6.4.1 VNPs/VLPs in Plants 211
6.4.2 VLPs via In Vitro Assembly 212
6.5 Functionalization of Viruses 212
6.5.1 Genetic Engineering 213
6.5.2 Chemical Conjugation 213
6.5.3 Other Functionalization Strategies 214
6.6 Uses of Flexuous Plant Viruses in Medicine 214
6.6.1 Vaccination and Immunotherapy 214
6.6.2 3D Tissue Engineering 215
6.6.3 Drug Delivery and Targeting 215
6.6.4 Bioimaging 216
6.6.5 Biosensing 217
6.7 Conclusions 217
References 218
7 Role of Plants in Nanoparticle Synthesis 225
Tanya Kapoor, Md Azizur Rahman, Shally Pandit and Anand Prakash
7.1 Introduction 225
7.2 Characterization of Nanoparticles 227
7.3 Classification of Nanoparticles 227
7.4 Biochemical Synthesis of Nanoparticles 228
7.5 Green Synthesis Approach for NPs 232
7.6 Plants’ Role in the Green Synthesis of NPs 232
7.7 Green Synthesis Using Enzymes 234
7.8 Nanoparticles Role in Photosynthesis 235
7.9 Applications of Green Synthesis NPs 235
7.10 Conclusion 237
References 237
8 Static DNA Nanostructures and Their Applications 245
Debalina Bhattacharya
8.1 Introduction 245
8.1.1 DNA Structure 245
8.1.2 Types of DNA Structures 247
8.2 Static DNA Nanostructures 247
8.2.1 DNA Tile Assembly 248
8.2.2 DNA Origami and Brick Assembly 251
8.3 DNA Origami Nanostructure 251
8.4 DNA Polyhedra 252
8.5 DNA-Functionalized Nanoparticles 253
8.6 Stability in Biological Fluid and Cellular Uptake of DNA-NSs and DNA-NPs 254
8.7 Application 255
8.7.1 DNA Nanostructures as Biosensors 255
8.7.2 DNA in Therapeutics 257
8.7.3 Photo Thermal Therapy and Photo Dynamic Therapy 258
8.7.4 DNA-Based Enzyme Reactors 259
8.7.5 DNA-Based Gene Delivery 260
8.7.6 DNA Scaffolds for Nanophotonics 261
8.7.7 Conclusion 261
References 262
9 Protein-Based Nanostructures 269
Ditipriya Hazra and Amlan Roychowdhury
9.1 Introduction 269
9.2 Peptide-Based Nanoparticle 270
9.3 Protein-Based Nanostructure 271
9.3.1 Oligomerization of Protein 272
9.3.2 Repeat Domain Proteins 273
9.3.3 Protein-Based 2D and 3D Lattice Assembly of Nanoparticles 274
9.3.4 Covalently Assembled Single Chain-Based Nanostructure 274
9.4 Application of Protein-Based Nanostructures in Therapeutics 275
9.4.1 Protein Nanoparticle for Drug Delivery 275
9.4.2 Nanoparticle-Based Vaccines 275
9.4.3 Hydrogel 277
References 278
10 Nanocomposites-Based Biodegradable Polymers 285
Pragati Chauhan, Mansi Sharma, Rekha Sharma and Dinesh Kumar
10.1 Introduction 286
10.2 Nanocomposite 287
10.3 Biodegradable Polymer 288
10.4 Biopolymer 289
10.5 Nanofillers 289
10.6 Cellulose and Its Sources 289
10.7 Nanocellulose 291
10.8 Nanocellulose Composite Processing 292
10.8.1 Melt Mixing Method 293
10.8.1.1 Injection Molding Method 294
10.8.1.2 Resin Transfer Molding Method 295
10.8.1.3 Extrusion Method 296
10.8.2 Solution Casting Method 297
10.8.3 Particle Suspensions Method 299
10.8.4 In-Situ Polymerization Method 300
10.8.5 Layer-by-Layer Lamination Method 303
10.9 Nanocomposites Used as Packaging Materials 305
10.10 Future Perspective and Application 306
10.11 Conclusions 307
References 308
11 Instrumentation for the Analysis and Characterization of Nanomaterials 317
Andrea Komesu, Johnatt Oliveira, Débora Kono Taketa Moreira, Yvan Jesus Olortiga Asencios, João Moreira Neto and Luiza Helena da Silva Martins
11.1 Introduction 318
11.2 Scanning Electron Microscopy [SEM] 319
11.3 Energy Dispersive X-Ray Analysis [EDX] 320
11.4 Atomic Force Microscopy [AFM] 322
11.5 Transmission Electron Microscopy [TEM] 323
11.6 Scanning Tunneling Microscopy [STM] 325
11.7 Ultraviolet-Visible Spectroscopy 327
11.8 Raman Spectroscopy 329
11.9 Fourier Transform Infrared Spectroscopy 330
11.10 X-Ray Diffraction [XRD] 332
11.11 X-Ray Photoelectron Spectroscopy [XPS] 333
11.12 Zeta Potential 335
11.13 Conclusions 336
References 337
12 Application of Microbial Nanoparticles 343
Monika Yadav, Sneha Upreti and Priyanka Singh
12.1 Introduction 344
12.2 Categorization of Nanoparticles 346
12.2.1 Polymeric Nanoparticles 346
12.2.1.1 Polymeric Micelles 346
12.2.1.2 Nanosphere 347
12.2.1.3 Nanocapsules 347
12.2.1.4 Polymerosome 347
12.2.1.5 Nanogels 348
12.2.1.6 Dendrimers 348
12.2.1.7 Nanocomplex 349
12.2.2 Lipid-Based Nanoparticles 349
12.2.2.1 Liposomes 349
12.2.2.2 Solid Lipid Nanoparticles 349
12.2.2.3 Lipoplexes 349
12.2.3 Inorganic Nanoparticles 350
12.2.3.1 Gold Nanoparticles 350
12.2.3.2 Magnetic Nanoparticles 350
12.2.3.3 Silica Nanoparticles 351
12.2.3.4 Quantum Dots 351
12.2.3.5 Nanocarbons 351
12.2.4 Bioinspired Nanoparticles 352
12.2.4.1 Exosomes 352
12.2.4.2 Protein Nanoparticles 352
12.2.4.3 DNA Nanostructures 352
12.2.5 Hybrid Nanoparticles 353
12.2.5.1 Cell Membrane-Coated Nanoparticles 353
12.2.5.2 Organic-Inorganic Nanocomposites 353
12.2.5.3 Lipid-Polymer Nanoparticles (LPNs) 354
12.3 Microbial-Mediated Synthesis of Nanoparticles for Therapeutic and Biomedical Applications 354
12.3.1 Bacteria 355
12.3.2 Molds and Yeast 356
12.3.3 Microalgae 357
12.4 Agriculture and Food Nanotechnology 358
12.4.1 Food Nanotechnology 359
12.4.1.1 Food Processing 359
12.4.1.2 Food Packaging 359
12.4.2 Agriculture Nanotechnology 360
12.4.3 Enzyme Nanotechnology 360
12.5 Role of Nanoparticles in the Medical Field 361
12.5.1 Nanoparticles Drug Delivery Applications 362
12.5.1.1 Drug Loading 362
12.5.1.2 Covalent Bonding (Prodrug) 362
12.5.1.3 Noncovalent Encapsulation 363
12.6 Application of Microbial Nanoparticles 363
12.6.1 Application of NPs in Food Industry 364
12.6.2 Applications of Nanoparticles in the Pharmaceuticals Industry 368
12.6.2.1 Biopolymeric Nanoparticles in Detection, Diagnosis and Imaging 369
12.6.2.2 In Drug Liberation 370
12.6.2.3 In Magnetic Partition and Recognition 372
12.6.3 Application of Nanoparticles in Cosmetic Sector 373
12.6.4 Nanoparticles in Bioremediation 375
12.6.4.1 Dendrimers in the Process of Bioremediation 376
12.6.4.2 Carbon Nanoparticles in Bioremediation 377
12.6.4.3 Biogenic Uraninite NMs in Bioremediation 378
12.7 Conclusion 378
References 379
13 Bio-Nanostructures: Applications and Perspectives 393
Tanya Kapoor, Shally Pandit and Anand Prakash
13.1 Introduction 393
13.2 Classification of Nanostructures 394
13.2.1 Self-Assembled Nanostructures 394
13.2.2 Carbon-Based Nanostructures 394
13.2.3 Nanocellulose Nanostructures 395
13.2.4 Graphene Oxide-Based Nanostructures 395
13.2.5 Silica-Based Nanostructures 396
13.3 Characterization Method of Nanostructures 396
13.4 Applications of Bio-Nanoparticles 401
13.5 Conclusion 404
References 405
Part 3: Application of Nanomaterials in Clinical Research 411
14 Nanomaterials for Tissue Grafting 413
Paramjeet Singh, Atanu Kotal and Avik Acharya Chowdhury
14.1 Introduction 414
14.2 Tissue Engineering 415
14.2.1 Bone Tissue Engineering 416
14.2.2 Cartilage Tissue Engineering 418
14.2.3 Tissue Grafting 420
14.3 What is Nanotechnology? 422
14.4 Nanomaterials and Nanoparticles 423
14.4.1 Nanomaterials 423
14.4.1.1 Organic Nanomaterials 423
14.4.1.2 Inorganic Nanomaterials 424
14.4.1.3 Composite Nanomaterials 424
14.4.2 Nanoparticles 425
14.4.2.1 Nanoparticles as Bioactive Agents 431
14.4.2.2 Scaffolds and Nanoparticles 431
14.5 Future Prospects 433
14.6 Conclusion 435
References 436
15 Nanoparticles for Cancer Therapy 441
Kaliyaperumal Rekha, Nalok Dutta, Muthu Thiruvengadam, Mohammad Ali Shariati, Muhammad Usman Khan, Muhammad Usman, Mihir Bhatta, Kunal Ghosh, Shaheer Arif and Muhammad Naeem
15.1 Introduction 442
15.2 Nanoparticles as Drug Delivery in Cancer Treatment 442
15.3 Drug Nanocarriers Classification 444
15.4 Organic Nanocarriers 444
15.4.1 Liposomes 444
15.4.2 Solid Lipid Nanoparticles 445
15.4.3 Polymer Nanoparticles 446
15.4.4 Polymer Micelles 446
15.4.5 Dendrimers 446
15.4.6 Polymersomes 447
15.4.7 Hydrogel Nanoparticles 447
15.4.8 Mineral Nanoparticles 448
15.5 Tumor Targeting by Nanoparticles 448
15.6 Utilization of Nanoparticles in Imaging and Treatment for Cancer 449
15.7 Use of Nanoparticles in the Diagnosis and Treatment of Breast Cancer 450
15.8 The Use of Nanoparticles in the Diagnosis and Treatment of Brain Cancer 451
15.9 Conclusion 452
References 452
16 Nanoantibiotics 459
Rituparna Saha and Mainak Mukhopadhyay
16.1 Introduction 460
16.2 Nanoantibiotics—A Potent Alternative to Antibiotics? 461
16.3 Developmental Strategy of Nanoantibiotics Over Antibiotics 462
16.4 Mechanism of Action of Nanoantibiotics 463
16.5 Common Functions of Nanoantibiotics 463
16.6 Nanomaterials—A Suitable Source of Nanoantibiotics 464
16.7 Types of Nanoantibiotics 465
16.7.1 Through Direct Formulations 465
16.7.1.1 Metal-Based Nanoparticles 465
16.7.1.2 Carbon-Based Nanomaterials 466
16.7.1.3 Nanoemulsions 466
16.7.1.4 Nanocomposites 466
16.7.2 Through Indirect Formulations 467
16.7.2.1 Polymers 467
16.7.2.2 Dendrimers 467
16.7.2.3 Hydrogels 468
16.7.2.4 Liposomes 468
16.8 Advantages of Nanoantibiotics 468
16.9 Disadvantages of Nanoantibiotics 469
16.10 Treatment of Multidrug-Resistant Bacteria with Nanoantibiotics 469
16.11 Treatment of Methicillin-Resistant Staphylococcus aureus with Nanoantibiotics 470
16.12 Development of Targeted Therapy Using Nanoantibiotics 470
16.13 Future Prospects of Nanoantibiotics 471
16.14 Conclusion 471
References 472
17 Theranostic Nanomaterials and Its Use in Biomedicine 479
Arka Mukhopadhyay
17.1 Introduction 480
17.2 Biomedical Payloads 482
17.2.1 Imaging 482
17.2.1.1 Optical Imaging 482
17.2.1.2 Magnetic Resonance Imaging 486
17.2.1.3 Computed Tomography 486
17.2.1.4 Positron Emission Tomography 486
17.2.1.5 Photo Acoustic Tomography 486
17.2.1.6 Ultrasound 488
17.2.1.7 Multimodal Image Therapy 488
17.2.2 Photodynamic Therapy 488
17.2.3 Targeted Gene Therapy 489
17.2.4 Photothermal Therapy 489
17.3 Carrier 490
17.3.1 Polymers 491
17.3.2 Lipids 491
17.3.3 Dendrimers 491
17.3.4 Inorganic Nanocarriers 492
17.4 Theranostic Nanomaterials and Applications 492
17.4.1 Magnetic Nanoparticles 492
17.4.2 Quantum Dots 493
17.4.3 Anisotropic Nanoparticles 494
17.4.4 Upconverting Nanoparticles 494
17.4.5 Carbon Nanotubes 495
17.4.6 Dendrimers 496
17.4.7 Other Nanomaterials 496
17.4.7.1 Gold (Au) Nanoparticles (GNPs) 496
17.4.7.2 Conjugated Polymers 498
17.5 Pharmacokinetics and Pharmacodynamics 499
17.6 Conclusions: Challenges and Future Perspectives 501
References 503
Appendix 509
Index 511
Erscheinungsdatum | 25.08.2022 |
---|---|
Sprache | englisch |
Maße | 10 x 10 mm |
Gewicht | 454 g |
Themenwelt | Medizin / Pharmazie ► Physiotherapie / Ergotherapie ► Orthopädie |
Technik ► Maschinenbau | |
Technik ► Medizintechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-119-85723-6 / 1119857236 |
ISBN-13 | 978-1-119-85723-5 / 9781119857235 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich