Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Medical Imaging Technology (eBook)

eBook Download: PDF
2013 | 2013
IX, 129 Seiten
Springer New York (Verlag)
978-1-4614-7073-1 (ISBN)

Lese- und Medienproben

Medical Imaging Technology - Mark A Haidekker
Systemvoraussetzungen
74,89 inkl. MwSt
(CHF 73,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Biomedical imaging is a relatively young discipline that started with Conrad Wilhelm Roentgen's discovery of the x-ray in 1895. X-ray imaging was rapidly adopted in hospitals around the world. However, it was the advent of computerized data and image processing that made revolutionary new imaging modalities possible. Today, cross-sections and three-dimensional reconstructions of the organs inside the human body is possible with unprecedented speed, detail and quality.
This book provides an introduction into the principles of image formation of key medical imaging modalities: X-ray projection imaging, x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, and radionuclide imaging. Recent developments in optical imaging are also covered. For each imaging modality, the introduction into the physical principles and sources of contrast is provided, followed by the methods of image formation, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modality.
With this book, the reader gains a broad foundation of understanding and knowledge how today's medical imaging devices operate. In addition, the chapters in this book can serve as an entry point for the in-depth study of individual modalities by providing the essential basics of each modality in a comprehensive and easy-to-understand manner. As such, this book is equally attractive as a textbook for undergraduate or graduate biomedical imaging classes and as a reference and self-study guide for more specialized in-depth studies.

Dr. Mark A. Haidekker received an education in Electrical Engineering at the University of Hannover in Germany and a PhD degree in computer science from the University of Bremen Germany. His research originally was focused on algorithm development in computer aided radiology, notably the improvement of estimation of the individual fracture risk in osteoporosis based on CT images.
Between 1999 and 2002, he was employed at the University of California, San Diego, first as postdoctoral research fellow and later as Assistant Research Scientist. In 2002, he assumed a position as Assistant Professor at the University of Missouri in Columbia. During this time, his research shifted towards biomechanical properties of the cell membrane, and in the process, he developed new fluorescent reporters (molecular rotors) for the real-time imaging of microviscosity and local shear stress in biomembranes and biofluids.
Since 2007, he is employed as Associate Professor in the College of engineering at the University of Georgia. His research involves x-ray tomography, fluorescent and hyperspectral imaging.
Biomedical imaging is a relatively young discipline that started with Conrad Wilhelm Roentgen's discovery of the x-ray in 1895. X-ray imaging was rapidly adopted in hospitals around the world. However, it was the advent of computerized data and image processing that made revolutionary new imaging modalities possible. Today, cross-sections and three-dimensional reconstructions of the organs inside the human body is possible with unprecedented speed, detail and quality. This book provides an introduction into the principles of image formation of key medical imaging modalities: X-ray projection imaging, x-ray computed tomography, magnetic resonance imaging, ultrasound imaging, and radionuclide imaging. Recent developments in optical imaging are also covered. For each imaging modality, the introduction into the physical principles and sources of contrast is provided, followed by the methods of image formation, engineering aspects of the imaging devices, and a discussion of strengths and limitations of the modality. With this book, the reader gains a broad foundation of understanding and knowledge how today's medical imaging devices operate. In addition, the chapters in this book can serve as an entry point for the in-depth study of individual modalities by providing the essential basics of each modality in a comprehensive and easy-to-understand manner. As such, this book is equally attractive as a textbook for undergraduate or graduate biomedical imaging classes and as a reference and self-study guide for more specialized in-depth studies.

Dr. Mark A. Haidekker received an education in Electrical Engineering at the University of Hannover in Germany and a PhD degree in computer science from the University of Bremen Germany. His research originally was focused on algorithm development in computer aided radiology, notably the improvement of estimation of the individual fracture risk in osteoporosis based on CT images. Between 1999 and 2002, he was employed at the University of California, San Diego, first as postdoctoral research fellow and later as Assistant Research Scientist. In 2002, he assumed a position as Assistant Professor at the University of Missouri in Columbia. During this time, his research shifted towards biomechanical properties of the cell membrane, and in the process, he developed new fluorescent reporters (molecular rotors) for the real-time imaging of microviscosity and local shear stress in biomembranes and biofluids. Since 2007, he is employed as Associate Professor in the College of engineering at the University of Georgia. His research involves x-ray tomography, fluorescent and hyperspectral imaging.

Introduction.- X-ray Projection Imaging.- Computed Tomography.- Nuclear Imaging.- Magnetic Resonance Imaging.- Ultrasound Imaging.- Trends in Medical Imaging Technology.- References.- Index.

Erscheint lt. Verlag 17.4.2013
Reihe/Serie SpringerBriefs in Physics
SpringerBriefs in Physics
Zusatzinfo IX, 129 p. 57 illus.
Verlagsort New York
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizin / Pharmazie Medizinische Fachgebiete Radiologie / Bildgebende Verfahren
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Schlagworte Image Formation • Introduction to CT Scan • Introduction to MRI • Introduction to PET Scan • Introduction to Ultrasound scan • Magnetic Resonance Imaging • Medical Imaging • Nuclear imaging • Tomographic Imaging • ultrasound imaging
ISBN-10 1-4614-7073-0 / 1461470730
ISBN-13 978-1-4614-7073-1 / 9781461470731
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
CHF 68,35