Scalable Uncertainty Management
Springer Berlin (Verlag)
978-3-540-87992-3 (ISBN)
Consistent Query Answering: The First Ten Years.- Heavy Tails and Web Models.- Managing Probabilistic Data with MystiQ: The Can-Do, the Could-Do, and the Can't-Do.- Frequent Itemset Mining from Databases Including One Evidential Attribute.- Evaluating Trustworthiness from Past Performances: Interval-Based Approaches.- A Comparative Study of Six Formal Models of Causal Ascription.- An Efficient Algorithm for Naive Possibilistic Classifiers with Uncertain Inputs.- Transitive Observation-Based Causation, Saliency, and the Markov Condition.- A Family of Tolerant Antidivision Operators for Database Fuzzy Querying.- Uncertainty Management for the Retrieval of Economic Information from Distributed Markets.- Loopy Propagation in a Probabilistic Description Logic.- On the Performance of Fuzzy Data Querying.- Tractable Reasoning with Bayesian Description Logics.- Approximate Reasoning for Efficient Anytime Induction from Relational Knowledge Bases.- Fusing Uncertain Structured Spatial Information.- A Neuro Fuzzy Approach for Handling Structured Data.- A Framework for the Partial Evaluation of SPARQL Queries.- An Evolutionary Perspective on Approximate RDF Query Answering.- Clustering Uncertain Data Via K-Medoids.- Speeding Up the NRA Algorithm.- Uncertain Context Modeling of Dimensional Ontology Using Fuzzy Subset Theory.- A Personalized Approach to Experience-Aware Service Ranking and Selection.- Performance Evaluation of Algorithms for Soft Evidential Update in Bayesian Networks: First Results.- Optimization of Queries over Interval Probabilistic Data.- Polynomial Time Queries over Inconsistent Databases.- Using OBDDs for Efficient Query Evaluation on Probabilistic Databases.- A Logical Framework to Reinforcement Learning Using Hybrid Probabilistic Logic Programs.- On theRelationship between Hybrid Probabilistic Logic Programs and Stochastic Satisfiability.- Scaling Most Probable World Computations in Probabilistic Logic Programs.- Measuring the Ignorance and Degree of Satisfaction for Answering Queries in Imprecise Probabilistic Logic Programs.
Erscheint lt. Verlag | 19.9.2008 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XI, 401 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 635 g |
Themenwelt | Informatik ► Theorie / Studium ► Compilerbau |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithmic Learning • answer set programs • Artificial Intelligence • Bayesian networks • Causal Networks • cross entropy • Database Querying • Decision Theory • Description Logics • distributed uncertainty • fuzzy information • Fuzzy Logic • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • hybrid probabilistic logic • imprecise informatio • Imprecise Information • Information Retrieval • large-scale uncertainty • machine learning • Neural networks • Ontologies • Possibility Theory • Probabilistic Logic • query processing • semantic web • spatial information • structured pattern recognition • Trust • uncertain context • Uncertainty Modeling |
ISBN-10 | 3-540-87992-7 / 3540879927 |
ISBN-13 | 978-3-540-87992-3 / 9783540879923 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich