An Introduction to Riemannian Geometry and the Tensor Calculus
Seiten
2008
Cambridge University Press (Verlag)
978-0-521-09188-6 (ISBN)
Cambridge University Press (Verlag)
978-0-521-09188-6 (ISBN)
The purpose of this book is to bridge the gap between differential geometry of Euclidean space of three dimensions and the more advanced work on differential geometry of generalised space. The subject is treated with the aid of the Tensor Calculus, which is associated with the names of Ricci and Levi-Civita; and the book provides an introduction both to this calculus and to Riemannian geometry. The geometry of subspaces has been considerably simplified by use of the generalized covariant differentiation introduced by Mayer in 1930, and successfully applied by other mathematicians.
1. Some Preliminaries; 2. Coordinates, Vectors , Tensors; 3. Riemannian Metric; 4. Christoffel's Three-Index Symbols. Covariant Differentiation; 5. Curvature of a Curve. Geodeics, Parallelism of Vectors; 6. Congruences and Orthogonal Ennuples; 7. Riemann Symbols. Curvature of a Riemannian Space; 8. Hypersurfaces; 9. Hypersurfaces in Euclidean Space. Spaces of Constant Curvature; 10. Subspaces of a Riemannian Space.
Erscheint lt. Verlag | 4.12.2008 |
---|---|
Zusatzinfo | Worked examples or Exercises |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 140 x 216 mm |
Gewicht | 270 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-521-09188-8 / 0521091888 |
ISBN-13 | 978-0-521-09188-6 / 9780521091886 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90