Elementary Differential Equations with Boundary Value Problems
Pearson (Verlag)
978-0-13-600613-8 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
The Sixth Edition of this widely adopted book remains the same classic differential equations text it's always been, but has been polished and sharpened to serve both instructors and students even more effectively.Edwards and Penney teach students to first solve those differential equations that have the most frequent and interesting applications. Precise and clear-cut statements of fundamental existence and uniqueness theorems allow understanding of their role in this subject. A strong numerical approach emphasizes that the effective and reliable use of numerical methods often requires preliminary analysis using standard elementary techniques.
C. Henry Edwards is emeritus professor of mathematics at the University of Georgia. He earned his Ph.D. at the University of Tennessee in 1960, and recently retired after 40 years of classroom teaching (including calculus or differential equations almost every term) at the universities of Tennessee, Wisconsin, and Georgia, with a brief interlude at the Institute for Advanced Study (Princeton) as an Alfred P. Sloan Research Fellow. He has received numerous teaching awards, including the University of Georgia's honoratus medal in 1983 (for sustained excellence in honors teaching), its Josiah Meigs award in 1991 (the institution's highest award for teaching), and the 1997 statewide Georgia Regents award for research university faculty teaching excellence. His scholarly career has ranged from research and dissertation direction in topology to the history of mathematics to computing and technology in the teaching and applications of mathematics. In addition to being author or co-author of calculus, advanced calculus, linear algebra, and differential equations textbooks, he is well-known to calculus instructors as author of The Historical Development of the Calculus (Springer-Verlag, 1979). During the 1990s he served as a principal investigator on three NSF-supported projects: (1) A school mathematics project including Maple for beginning algebra students, (2) A Calculus-with-Mathematica program, and (3) A MATLAB-based computer lab project for numerical analysis and differential equations students. David E. Penney, University of Georgia, completed his Ph.D. at Tulane University in 1965 (under the direction of Prof. L. Bruce Treybig) while teaching at the University of New Orleans. Earlier he had worked in experimental biophysics at Tulane University and the Veteran's Administration Hospital in New Orleans under the direction of Robert Dixon McAfee, where Dr. McAfee's research team's primary focus was on the active transport of sodium ions by biological membranes. Penney's primary contribution here was the development of a mathematical model (using simultaneous ordinary differential equations) for the metabolic phenomena regulating such transport, with potential future applications in kidney physiology, management of hypertension, and treatment of congestive heart failure. He also designed and constructed servomechanisms for the accurate monitoring of ion transport, a phenomenon involving the measurement of potentials in microvolts at impedances of millions of megohms. Penney began teaching calculus at Tulane in 1957 and taught that course almost every term with enthusiasm and distinction until his retirement at the end of the last millennium. During his tenure at the University of Georgia he received numerous University-wide teaching awards as well as directing several doctoral dissertations and seven undergraduate research projects. He is the author of research papers in number theory and topology and is the author or co-author of textbooks on calculus, computer programming, differential equations, linear algebra, and liberal arts mathematics.
Preface
1 First-Order Differential Equations
1.1 Differential Equations and Mathematical Models
1.2 Integrals as General and Particular Solutions
1.3 Slope Fields and Solution Curves
1.4 Separable Equations and Applications
1.5 Linear First-Order Equations
1.6 Substitution Methods and Exact Equations
1.7 Population Models
1.8 Acceleration-Velocity Models
2 Linear Equations of Higher Order
2.1 Introduction: Second-Order Linear Equations
2.2 General Solutions of Linear Equations
2.3 Homogeneous Equations with Constant Coefficients
2.4 Mechanical Vibrations
2.5 Nonhomogeneous Equations and Undetermined Coefficients
2.6 Forced Oscillations and Resonance
2.7 Electrical Circuits
2.8 Endpoint Problems and Eigenvalues
3 Power Series Methods
3.1 Introduction and Review of Power Series
3.2 Series Solutions Near Ordinary Points
3.3 Regular Singular Points
3.4 Method of Frobenius: The Exceptional Cases
3.5 Bessel's Equation
3.6 Applications of Bessel Functions
4 LaplaceTransform Methods
4.1 Laplace Transforms and Inverse Transforms
4.2 Transformation of Initial Value Problems
4.3 Translation and Partial Fractions
4.4 Derivatives, Integrals, and Products of Transforms
4.5 Periodic and Piecewise Continuous Input Functions
4.6 Impulses and Delta Functions
5 Linear Systems of Differential Equations
5.1 First-Order Systems and Applications
5.2 The Method of Elimination
5.3 Matrices and Linear Systems
5.4 The Eigenvalue Method for Homogeneous Systems
5.5 Second-Order Systems and Mechanical Applications
5.6 Multiple Eigenvalue Solutions
5.7 Matrix Exponentials and Linear Systems
5.8 Nonhomogeneous Linear Systems
6 Numerical Methods
6.1 Numerical Approximation: Euler's Method
6.2 A Closer Look at the Euler Method
6.3 The Runge-Kutta Method
6.4 Numerical Methods for Systems
7 Nonlinear Systems and Phenomena
7.1 Equilibrium Solutions and Stability
7.2 Stability and the Phase Plane
7.3 Linear and Almost Linear Systems
7.4 Ecological Models: Predators and Competitors
7.5 Nonlinear Mechanical Systems
7.6 Chaos in Dynamical Systems
8 Fourier Series Methods
8.1 Periodic Functions and Trigonometric Series
8.2 General Fourier Series and Convergence
8.3 Fourier Sine and Cosine Series
8.4 Applications of Fourier Series
8.5 Heat Conduction and Separation of Variables
8.6 Vibrating Strings and the One-Dimensional Wave Equation
8.7 Steady-State Temperature and Laplace's Equation
9 Eigenvalues and Boundary Value Problems
9.1 Sturm-Liouville Problems and Eigenfunction Expansions
9.2 Applications of Eigenfunction Series
9.3 Steady Periodic Solutions and Natural Frequencies
9.4 Cylindrical Coordinate Problems
9.5 Higher-Dimensional Phenomena
References for Further Study
Appendix: Existence and Uniqueness of Solutions
Answers to Selected Problems
Index I-1
Erscheint lt. Verlag | 14.3.2008 |
---|---|
Sprache | englisch |
Maße | 209 x 261 mm |
Gewicht | 1551 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 0-13-600613-2 / 0136006132 |
ISBN-13 | 978-0-13-600613-8 / 9780136006138 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich